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Main Sources of this Lecture

• Foster (1985)

• Atkinson (1970)

• Foster and Sen (1997), Annexe to “On • Foster and Sen (1997), Annexe to “On 

Economic Inequality”

• There are others: please see the readings 

list.



Introduction

• Focus of this lecture:

– Unidimensional income

– Measurement– Measurement



Inequality Measurement

• Inequality Rankings: A rule for comparing 

distributions in terms of inequality. 

– ‘Complete rankings’ vs. ‘Partial Rankings’– ‘Complete rankings’ vs. ‘Partial Rankings’

– Lorenz dominance: A partial ranking.

• Inequality Measures



Inequality Measures

Four Basic PropertiesFour Basic Properties



Notation

• Let                             be the income distribution, 

where xi is the income of the ith person, and n=n(x)

is the population size.

• Let                       be the overall set of distributions 

{ }nxxx ,.......,1=

nRD = U• Let                       be the overall set of distributions 

under consideration.

• An inequality measure is a function                    

which, for each distribution x indicates the level I(x)

of inequality in the distribution.

n

n RD ++≥= 1U

RDI →:



Four Basic Properties for 

Inequality Measures

x is obtained from y by a permutation of 

incomes if x=Py, where P is a permutation 

matrix.
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1. SYMMETRY (Anonymity): If x is obtained from y
by a permutation of incomes, then 

I(x)=I(y).



Four Basic Properties…

x is obtained from y by a replication if the 

incomes in x are simply the incomes in y

repeated a finite number of times.

},,......,,,,{ yyyyyyx = },,......,,,,{ 2211 nn yyyyyyx =

2.  REPLICATIO  I VARIA CE (Population Principle):
If x is obtained from y by a replication, then 

I(x)=I(y).

}8,8,1,1,6,6{=x



Four Basic Properties…

x is obtained from y by a proportional 

change (or scalar multiple) if the incomes 

in x=αy, for some α>0.

3.  SCALE I VARIA CE (Zero-Degree Homogeneity): If x
is obtained from y by a proportional 

change, then I(x)=I(y).

}8,1,6{=y }16,2,12{=x



Four Basic Properties…

x is obtained from y by a Pigou-Dalton 
regressive transfer if for some i, j:

i)

ii)

ji yy ≤

0>−=− jjii yxxy
ii

xty
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4.  TRA SFER: If x is obtained from y by a 
regressive transfer, then I(x)>I(y).

0>−=− jjii yxxy

}7,6,2{y = }8,6,1{x =

jj xty =+



• Any measure satisfying the four basic 

properties (symmetry, replication 

invariance, scale invariance and transfer) is 

Four Basic Properties for 

Inequality Measures

invariance, scale invariance and transfer) is 

called a relative inequality measure.



Inequality Rankings: 

The Lorenz CurveThe Lorenz Curve



The Lorenz Curve (Lorenz, 1905)

1. Order the population from lowest 
income to highest.

Example: 
Cum.

Population

Share

Cum.

Income

Share

Given an income distribution of n people

Example: 
{ }nxxx ,.......,1=

{ }1,6,8x =

{ }nxxx ˆ,.......,ˆˆ
1=

{ }8,6,1ˆ =x
2. On the horizontal axis plot the 

cumulative share of population.

3. On the vertical axis plot the 
cumulative share of the income 
received by each cumulative 
population share.

Share

p

Share

L(x, p)

1/3 1/15

2/3 7/15

1 15/15

{ }8,6,1ˆ =x



Lorenz Curve
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• At any point, the Lorenz curve gives the cumulative 
share of total income received by each poorest 
cumulative share of the population.
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The Lorenz Curve: Characteristics

1. Starts in (0,0); ends in (1,1).

2. Always increasing and convex (because 

population is ordered from poorest to 

richest).richest).

3. Lorenz curve of a perfectly equal

distribution?

4. Lorenz curve of a perfectly unequal

distribution?



The Lorenz Curve of a Perfectly 

Equal Distribution
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The Lorenz Curve of a Perfectly 
Unequal Distribution
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Lorenz Dominance

• Given two distributions x and y, x Lorenz-
dominates y (x is less unequal than y) if and 
only if:

L(x,p) ≥ L(y,p) for all p, with > for some p

• Example:

}9,5,1{y =}8,6,1{x =



Lorenz Curves for Two 

Distributions
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Lorenz Criterion & Relative 

Inequality Measures: 

the link between the two

• How does the Lorenz Criterion relates to the • How does the Lorenz Criterion relates to the 

Relative Inequality Measures (those 

satisfying the 4 basic axioms?)



The Lorenz Curve and the Four Axioms

• Symmetry and Replication are 
satisfied since permutations and 
replications leave the curve 
unchanged.

• Proportional changes in 
incomes do not affect the LC, 

Lorenz Curves for Two 

Distributions
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incomes do not affect the LC, 
since it is normalized by the 
mean income. Only shares
matter. So it is scale invariant.

• A regressive transfer will make 
the Lorenz curve to be further 
away from the diagonal. So it 
satisfies transfer.
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Lorenz Consistency (Foster, 1985)

• An inequality measure I: D→R is Lorenz 

Consistent if for all x and y in D:

)y(I)x(IxLy <⇒

• An inequality measure I: D→R is Lorenz 

Consistent if and only if it satisfies 

Symmetry, Replication Invariance, Scale 

Invariance and Transfer, ie: if and only if it 

is a relative inequality measure.



Incomplete & Complete Rankings

• Lorenz Ranking is incomplete. When Lorenz curves 

cross, the Lorenz criterion can not decide between the 

two distributions. 

– If Lorenz dominance holds, then all relative measures 

agree.

– If Lorenz dominance fails, then a measure of – If Lorenz dominance fails, then a measure of 

inequality might be used to get a complete ranking. 

But different measures may rank the distributions 

differently.

• Shorrocks and Foster (1987) provide additional 

conditions by which two distributions can be ranked 

when their Lorenz curves cross once. Still, these do not 

eliminate all the incompleteness.



Atkinson’s Theorem 

(Atkinson, 1970)

• Motivating question: Given two income 
distributions x and y, which one 
produces a higher social welfare?produces a higher social welfare?



Stochastic Dominance

• Atkinson’s theorem draws on the stochastic 
dominance literature, developed for risk 
analysis (how to choose betw 2 lotteries?). 

• One distribution is said to stochastically 
dominate another if it yields higher dominate another if it yields higher 
expected utility for all utility functions in a 
given class.

• Three common stochastic dominance 
relationships: First Order (FSD), Second 
Order (SSD), Third Order (TSD).



Cumulative Distribution Function (cdf)

• Given the income distribution x, the cumulative 

distribution function associated with x, Fx(s) is 

the proportion of persons i such that xi≤s.

• The c.d.f. of a random variable is clearly a 

monotonously increasing (or more precisely, 

non decreasing) function from 0 to 1



Cumulative Distribution Function (cdf)

• Example (discrete case): x={1,6,8}: What 

proportion of people have an income lower than 

1? Lower than 6? Lower than 8?
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Stochastic Dominance : Definition 

Let F(s) and G(s) be the cdf of x and y, respectively.

F(s) dominates G(s) iff

for all s with > for some s

∫∫ ≥
yy

sdGsusdFsu
00

)()()()(



Stochastic Dominance: Order and 

conditions on the utility functions

�FIRST ORDER (FSD)

Positive Marginal Utility (MU): u’(s)>0

�SECOND ORDER (SSD)�SECOND ORDER (SSD)

Positive and decreasing MU: u’(s)>0 and u’’(s)<0

�THIRD ORDER (TSD)

Positive, decreasing and convex MU:

u’(s)>0 ; u’’(s)<0 ; u’’’(s)<0



Stochastic Dominance: 

Equivalent Conditions using the cdf

• FIRST ORDER

F(s) FSD G(s) iff

)()( sGsF ≤ ∫∫ ≤
yy

ds)s(Gds)s(F

• SECOND ORDER

F(s) FSD G(s) iff

for all s, with < for 

some s

∫∫
00

∫ ∫∫ ∫ ≤
x

0

y

0

x

0

y

0

ds)s(Gds)s(F

for all s, with < for 

some s

• THIRD ORDER

F(s) FSD G(s) iff

for all s, with < for some s



Stochastic Dominance: 

• FSD→SSD →TSD (lower orders of 

dominance imply higher orders of 

dominance).dominance).

• The converse does not hold.



Example of First Order Stochastic 

Dominance (continuous)
F(s) G(s)

G(s)

1

F(s) FSD G(s) because F(s)≤G(s) for all s, 

with < for some s

s

G(s)

F(s)



Example of First Order Stochastic 

Dominance (discrete): 

x={1,6,8} y={2,6,8}

Fy(s) FSD Fx(s): Note that the cdf of y is at 

every point lower or equal than that of x



First Order Stochastic Dominance 

(discrete)
• Also note that the condition of FSD of the cdf 
implies ‘vector dominance’, ie: each element of 
the (ordered) dominating vector is not lower than 
the element of the dominated one and strictly 
greater for some:greater for some:

x={1,6,8} y={2,6,8}:

1<2

6=6

8=8
• Note that for this check the two vectors need to have the same number 
of elements. In some cases replications may be required to make this 
comparison.



Second Order Stochastic Dominance

1

G(s)

F(s)

s
F(s) SSD G(s) because                         with 

< for some s. 
∫∫ ≤
y

0

y

0

ds)s(Gds)s(F



Example of Second Order Stochastic 

Dominance (discrete): 

x={1,6,8} y={2,6,7}

Fy(s) SSD Fx(s): Note that the cumulative area below 
the cdf of y is at every point lower or equal than that of x.



Example of Second Order Stochastic 

Dominance (discrete):

• In terms of comparisons of the ordered vectors, for 
SSD one can check the ‘cumulatives’. Those of 
the dominating vector are not lower than those of 
the dominated one, and strictly higher at least for the dominated one, and strictly higher at least for 
some:

x={1,6,8} y={2,6,7}:

1<2

1+6<2+6

1+6+8=2+6+7



Link between Lorenz Curve 

and the cdf (Foster, 1985):

• Formal Definition of the Lorenz Curve for the 

discrete case. Given a distribution x, one defines an 

ordered version of it (from lowest to highest) x̂

]1,0[∈pXxpxL
pn

i

ix ∑
=

=
1

ˆ),(

∑
=

=
n

i

ixX
1

ˆ



Link between Lorenz Curve 

and the cdf

• Given the cdf of a distribution 

Fx(s):R→[0,1], we can define its inverse 

F-1x(t):[0,1] → R.x

• Then, the Lorenz Curve associated with x is 

given by:

with      being the mean of x.

∫
−=

p

x dttF
x
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x



Link between Lorenz Curve 

and the cdf graphically:

{ }8,6,1ˆ =x

∫
−=

p

x dttF
x

pxL
0

1 )(
1

),(
CDF: Fx(s)

I+VERSE OF 

THE CDF: F-1x(t)

LORE+Z CURVE

Source: Foster (1985), p. 17.



Example of link btw Lorenz & cdf

x={1,6,8} y={2,6,7}
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Atkinson’s Theorem (1970)

• Conditions: 

1. Social Welfare is the sum of individual utility 
functions

2. Utility functions are increasing and concave

∑
=

=
n

i

isu
n

sW
1

)(
1

)(

2. Utility functions are increasing and concave

3. The two distributions have the same mean 
income

Then: 

0)(' >su 0)('' <su

yx =

)()( yWxWiffxLy >



Atkinson’s Theorem

• Atkinson’s Theorem proved that for distributions with 
equal means, Lorenz Dominance is equivalent to SSD and 
so we can judge distributions using the Lorenz curve.

• The theorem has a strong policy implication: For • The theorem has a strong policy implication: For 
distributions with equal mean income, to increase welfare 
we just need to make the distribution more equal!

• If the means differ, SSD implies that the mean of the 
distribution that dominates can be no  lower than the mean 
of the dominated one.



Summary so far… 
(Theorem 1 in Shorrocks & Foster, 1987)

• For x, y having equal means, the following 
statements are equivalent:

a) x Lorenz dominates y

b) I(y)>I(x)  for all relative inequality measures 
I(.)

c) x SSD y

d) can be obtained from      by a non-empty 
sequence of rank preserving progressive 
transfers.

x̂ ŷx̂ ŷx̂ ŷ



Extensions of Atkinson’s Theorem

• Sen extended Atkinson’s theorem to the 
more general case in which welfare is non-
aditive (W=φ(s1,….. sn) ) and strictly S-
concave.concave.

• Shorrocks (1983) extended Atkinson’s 
theorem to the case of different means, 
using the Generalized Lorenz Curve.



Generalized Lorenz Curve

• It is the Lorenz Curve scaled by the mean for each 

population share                                 for each p

• Example: Generalized Lorenz Curve

5.00

)()( pLxpGL =

{ }8,6,1ˆ =x
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Extension of Atkinson’s Theorem 

• Conditions: 

1. Social Welfare is the sum of individual utility 
functions

2. Utility functions are increasing and concave

∑
=

=
n

i

isu
n

sW
1

)(
1

)(

2. Utility functions are increasing and concave

Then:

(When means differ, GL Dominance is equivalent to 
SSD ).

0)(' >su 0)('' <su

)()( yWxWiffxGLy >



Summary 
I+EQUALITY 

MEASUREME+T

Measures Rankings 

Four basic principles: Lorenz Generalized Lorenz 
Four basic principles: 

Symmetry, Replication 

Invariance, Scale Invariance & 

Transfer: Relative Inequality 

Measures

Lorenz 

Criterion/Dominance 

(from Lorenz Curve)

For equal means...

Second Order Stochastic 

Dominance

Generalized Lorenz 

Criterion/Dominance 

(from Generalized 

Lorenz 

Curve=LC*Mean)

Different means...



Transfer Sensitivity

• Motivating Question:

– How should these transfers be reflected in an 

inequality measure?

x={2,4,6,8}  x’={3,3,6,8} x’’={2,4,7,7}

• Intuitively, a transfer-sensitive inequality measure 

places more emphasis on transfers at the lower end of 

the distribution.

• Shorrocks and Foster (1987) formalize the idea.



Subgroup Consistency

• Subgroup Consistency: If I(x’)>I(x) and I(y’)=I(y), 

and n(x’)=n(x), n(y’)=n(y) and                              , 

then I(x’,y’)>I(x,y).

• Crucially important for policy design & evaluation, 

regional vs. national

yyxx == ','

regional vs. national

• Yet…

– There are arguments in favour of considering the 

interdependence of incomes, their relative positions, 

issues that are ignored when subgroup consistency is 

satisfied. See example in Foster & Sen (1997), p.160.



Additive Decomposability

• An inequality measure I(.) is additively 
decomposable if:

where the weights vary according to the Inequality 

),()()(][][),( yxIyIwxIwBIWIyxI yx ++=+=

where the weights vary according to the Inequality 
Measure, being the population shares in many 
cases, and         being the ‘smoothed’ group 
distributions, with each member of the respective 
group having the mean income of that group.

• Additive Decomposability implies Subgroup 
Consistency. The converse is not true.

),( yx



Example of Additive Decomp.

• Distribution x=(2,8,6,10)

• Say we have two groups of people (by some 
characteristic, say region): first two and 
second two: x =(2,8) x =(6,10).second two: xA=(2,8) xB=(6,10).

• Inequality within groups is the weighted
sum of I(xA)=I(2,8)  and I(xB)=I(6,10). 
(Usually weighted by population shares)



Example of Additive Decomp.

• Inequality between groups: replace the 

income of each person by the mean income 

of his group; ie. create smoothed

distributions xSA=(5,5) y x
S
B=(8,8). Then 

inequality between is I(5,5,8,8).inequality between is I(5,5,8,8).

• Additive Decomposable measures are such 

that:

I(2,8,6,10)=wAI(2,8)+wBI(6,10)+I(5,5,8,8)



Normalisation

If every individual has the same income, 

then there is complete equality and the 

degree of inequality is normalised to zero, degree of inequality is normalised to zero, 

ie. I(x)=0



Continuity

I(x) is continuous if a small change in any 

income does not result in an abrupt change 

in the inequality index I(x)

• CO TI UITY: For any sequence xk, if xk 

converges to x, then I(xk) converges to 

I(x)

in the inequality index I(x)



Inequality MeasuresInequality Measures



Non-Lorenz Consistent 

Inequality Measures

• Range:

From now on: x=µ

)(
1

)( minmax xxxR −=
µ

• Range:

From now on: x=µ

• It is the gap between the highest and the lowest 

income as a ratio to the mean income.

• Ignores the distribution between the extremes: 

Violates  transfer.

µ



Non-Lorenz Consistent 

Inequality Measures

• Kuznets Ratio

X
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• It is the share of income earned by the richest R% • It is the share of income earned by the richest R% 

relative to the share of income earned by the poorest 

p%. The 90-10 ratio is typical. 

• The ratios are formed of ‘pieces’ of the Lorenz 

Curve.

• Like the range, it ignores the distribution between the 

R% and the P%, and therefore violates transfer.



Non-Lorenz Consistent 

Inequality Measures

• Relative Mean Deviation

• Ratio of the sum of the absolute value of the 

µ
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• Ratio of the sum of the absolute value of the 

distance between each income in the distribution 

and the mean income, to total income.

• It is not sensitive to transfers between people on 

the same side of the mean income. Violates 

transfer.



Non-Lorenz Consistent 

Inequality Measures

• Variance

• By squaring the gaps of each income to the mean, 

n

)x(

)x(V

2
n

1i

i∑
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µ−

=

• By squaring the gaps of each income to the mean, 

the bigger gaps receive a higher weight. It 

satisfies transfer.

• However, the variance depends on the mean. It 

violates scale invariance.



Non-Lorenz Consistent Inequality Measures

• Variance of Logarithms

• Applies the variance to the distribution of log-

)}ln(),.......,{ln(~
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• Applies the variance to the distribution of log-

incomes. 

• It is mean-independent (scale invariant).

• But it violates transfer when relatively high 

incomes are involved. Not Lorenz consistent.



Lorenz Consistent Inequality Measures

• Squared Coefficient of 
Variation

• By taking the variance over the normalised 

distribution, it is scale invariant. It satisfies the 
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• By taking the variance over the normalised 

distribution, it is scale invariant. It satisfies the distribution, it is scale invariant. It satisfies the 

four basic axioms.

• It is not transfer sensitive. A regressive transfer t 

has the same impact on C regardless of the part of 

the distribution in which it took place.

• It is additively decomposable, the weights are
2)/)(/( µµ xxx nnw =

distribution, it is scale invariant. It satisfies the 

four basic axioms.

• It is not transfer sensitive. A regressive transfer t 

has the same impact on C regardless of the part of 

the distribution in which it took place.

• It is additively decomposable, the weights are
2)/)(/( µµ xxx nnw =



Lorenz Consistent Inequality Measures

• Gini Coefficient – Equivalent expressions:
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Inequality is the sum of all pairwise comparisons 

of ‘two person inequalities’ that can possibly be made.



An easy way to compute the Gini 

manually (from Prof. Foster): 

• X=(1,2,3,4) 1 2 3 4

1 0 1 2 3

2 1 0 1 2
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• Create a double-entry 
table to compute the 
numerator of the 
above expression

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

25.0
80

20

)4/10()4)(2(

)121321(2
)(

2
==

+++++
=xG

= =i jin 12 µ



Lorenz Consistent Inequality Measures

• Gini Coefficient: Relationship with the Lorenz Curve
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Lorenz Consistent Inequality Measures
Gini Coefficient:

• It satisfies the four basic axioms.

• It is not transfer-sensitive in the ‘traditional way’, where the impact of a 
transfer on inequality depends on the income levels. Because it is rank-based, 
the sensitivity of the Gini depends on the number of people in between. The 
higher the number of people in between, the bigger the impact of the transfer.

• It is not subgroup consistent.

• It can not be decomposed into the between-within group terms but in this 
way:

R is a non-negative residual term that balances the equation. It indicates the 
extent to which the subgroups’ distributions overlap.
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Atkinson’s Measures of Inequality

• Core Concept: 

Equally Distributed Equivalent Income 

(EDE): The income level which, if assigned (EDE): The income level which, if assigned 

to all individuals produces the same social 

welfare than the observed distribution.



Atkinson’s Inequality

• OJ: Total given 
income

• JK: Set of all 
possible 
distributions of OJ.

• I1, I2, I3: Social • I1, I2, I3: Social 
Welfare Levels

• A: Actual 
Distribution (1:OF, 
2: AF)

• CE: Mean Income

• BD: Equally 
Distributed 
Equivalent Income



Atkinson’s Measures of Inequality
• Assuming this  utility function (Constant Relative Risk 
Aversion) and additive welfare
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The income level which, 

if assigned to all individuals 

produces the same social 

welfare than the observed distribution

These are also known 

as the General 

Means of Order Beta 

(in this case for α≤1)



Atkinson’s EDE income and

Gral Means
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• Increasing in β• Increasing in β

• When β =1, arithmetic mean.

• When β >1, more weight on higher incomes.

• When β <1, more weight on lower incomes. This is 

Atkinson’s EDE income. The higher the inequality, 

the lower is the β-mean with respect to the mean.



Atkinson’s EDE income and

Gral Means
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Lorenz Consistent Inequality Measures

• Atkinson’s Measures
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• All the members in the family are Lorenz consistent.

• Parameter β is a measure of ‘inequality aversion’ or relative 
sensitivity of transfers at different income levels. The lower is 

β, the higher is the aversion to inequality and more weight is 
attached to transfers at the lower end of the distribution.

• Each member is subgroup consistent but it is not additively 

decomposable.
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Lorenz Consistent Inequality Measures
• Generalized Entropy Measures
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• When β=1, it is the Theil first measure.

• When β=0, it is the Theil second measure, also known as Mean 
Logarithmic Deviation 

• When β=2, it is a multiple of the Squared Coefficient of Variation.



Lorenz Consistent Inequality Measures

• Generalized Entropy Measures

• Each Iβ is a monotonic transformation of Atkinson’s 

measure.

• The family is Lorenz Consistent.

• Parameter β is an indicator of ‘inequality aversion’ (more • Parameter β is an indicator of ‘inequality aversion’ (more 

averse as β falls). It also indicates the measure’s sensitivity 

to transfers at different parts of the distribution:

– With β =2, it is ‘transfer neutral’. Multiple of the CV2.

– With β <2, it favours transfers at the lower end of the 

distribution (includes both Theil’s measures).

– With β >2 it shows a kind of ‘reverse sensitivity’ stressing 

transfers at higher incomes. (These are not used)



Lorenz Consistent Inequality Measures

• Generalized Entropy Measures GE

• They are additively decomposable with weights 
being:

• Only the Theil’s Measures (β=1 and β=0) are the 

βµµ )/)(/( xxx nnw =

• Only the Theil’s Measures (β=1 and β=0) are the 
ones with weights that sum up exactly to 1. 

• I is a Lorenz consistent, normalized, continuous 
and additively decomposable inequality measure 
iff it is a positive multiple of a GE measure. 
(Shorrocks,1980, 1984) That means there is 
only one class of ineq. measures that are 
additively decomposable.


