Multidimensional Well-Being and Inequality Indices

Suman Seth

Vanderbilt University & OPHI

2nd September, 2008

• How to measure?

- How to measure?
 - Income?

- How to measure?
 - Income?
- Various other components (dimensions) of well-being

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education
 - Health status

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education
 - Health status
- Single dimension vs Multiple dimensions

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education
 - Health status
- Single dimension vs Multiple dimensions
 - Capability approach

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education
 - Health status
- Single dimension vs Multiple dimensions
 - Capability approach
- Example

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education
 - Health status
- Single dimension vs Multiple dimensions
 - Capability approach
- Example
 - The physical quality of life index (Morris, 1979)

- How to measure?
 - Income?
- Various other components (dimensions) of well-being
 - Level of education
 - Health status
- Single dimension vs Multiple dimensions
 - Capability approach
- Example
 - The physical quality of life index (Morris, 1979)
 - The human development index (UNDP)

Introduction

- Introduction
- Basic framework of the Human Development Index (HDI)

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals
- Multidimensional Inequality Measures

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals
- Multidimensional Inequality Measures
- Axioms of MD inequality measurement

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals
- Multidimensional Inequality Measures
- Axioms of MD inequality measurement
- Multidimensional indices

• A composite index consisting of three indices:

- A composite index consisting of three indices:
 - Gross Domestic Product (GDP) Index

- A composite index consisting of three indices:
 - Gross Domestic Product (GDP) Index
 - Life expectancy (LE) Index

- A composite index consisting of three indices:
 - Gross Domestic Product (GDP) Index
 - Life expectancy (LE) Index
 - Education (E) Index

- A composite index consisting of three indices:
 - Gross Domestic Product (GDP) Index
 - Life expectancy (LE) Index
 - Education (E) Index
- All indices are normalized between zero and one

- A composite index consisting of three indices:
 - Gross Domestic Product (GDP) Index
 - Life expectancy (LE) Index
 - Education (E) Index
- All indices are normalized between zero and one
- GDP Index

$$= \frac{\log (PCGDP) - \log (\$100)}{\log (\$40,000) - \log (\$100)}$$

- A composite index consisting of three indices:
 - Gross Domestic Product (GDP) Index
 - Life expectancy (LE) Index
 - Education (E) Index
- All indices are normalized between zero and one
- GDP Index

$$=\frac{\log \left(\mathsf{PCGDP}\right)-\log \left(\$100\right)}{\log \left(\$40,000\right)-\log \left(\$100\right)}$$

Life Expectancy Index

$$=\frac{LE-25}{85-25}$$

Education Index

- Education Index
 - Consists of two sub-indices

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
- Adult literacy index

$$=\frac{\mathsf{AL}-\mathsf{0}}{\mathsf{100}-\mathsf{0}}$$

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
- Adult literacy index

$$=\frac{\mathsf{AL}-\mathsf{0}}{\mathsf{100}-\mathsf{0}}$$

Gross school enrolment index

$$=\frac{\mathsf{GSE}-\mathsf{0}}{100-\mathsf{0}}$$

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
- Adult literacy index

$$=\frac{\mathsf{AL}-\mathsf{0}}{\mathsf{100}-\mathsf{0}}$$

Gross school enrolment index

$$= \frac{\mathsf{GSE} - \mathsf{0}}{100 - \mathsf{0}}$$

• Education Index = $\frac{2}{3} \times$ Adult literacy index + $\frac{1}{3} \times$ Gross school enrolment index

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
- Adult literacy index

$$=\frac{\mathsf{AL}-\mathsf{0}}{\mathsf{100}-\mathsf{0}}$$

Gross school enrolment index

$$=\frac{\mathsf{GSE}-\mathsf{0}}{100-\mathsf{0}}$$

- Education Index = $\frac{2}{3} \times$ Adult literacy index + $\frac{1}{3} \times$ Gross school enrolment index
- HDI = $\frac{1}{3} \times$ GDP Index $+\frac{1}{3} \times$ Life exp Index $+\frac{1}{3} \times$ Education Index

Example India

• Per Capita Gross Domestic Product = \$3, 139

Example India

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%
- Per Capita gross domestic product (PGDP) index =

$$\frac{\log{(\$3,139)} - \log{(\$100)}}{\log{(\$40,000)} - \log{(\$100)}} = 0.58$$

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%
- Per Capita gross domestic product (PGDP) index =

$$\frac{\log{(\$3,139)} - \log{(\$100)}}{\log{(\$40,000)} - \log{(\$100)}} = 0.58$$

• Life expectancy = (63.6 - 25) / (85 - 25) = 0.64

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%
- Per Capita gross domestic product (PGDP) index =

$$\frac{\log{(\$3,139)} - \log{(\$100)}}{\log{(\$40,000)} - \log{(\$100)}} = 0.58$$

- Life expectancy = (63.6 25) / (85 25) = 0.64
- Adult literacy index = (61 0) / (100 0) = 0.61

- Per Capita Gross Domestic Product = \$3, 139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%
- Per Capita gross domestic product (PGDP) index =

$$\frac{\log{(\$3,139)} - \log{(\$100)}}{\log{(\$40,000)} - \log{(\$100)}} = 0.58$$

- Life expectancy = (63.6 25) / (85 25) = 0.64
- Adult literacy index = (61 0) / (100 0) = 0.61
- Gross school enrolment index = (62 0) / (100 0) = 0.62

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%
- Per Capita gross domestic product (PGDP) index =

$$\frac{\log{(\$3,139)} - \log{(\$100)}}{\log{(\$40,000)} - \log{(\$100)}} = 0.58$$

- Life expectancy = (63.6 25) / (85 25) = 0.64
- Adult literacy index = (61 0) / (100 0) = 0.61
- ullet Gross school enrolment index = (62-0) / (100-0) = 0.62
- Education index = $\frac{2}{3} \times 0.61 + \frac{1}{3} \times 0.62 = 0.61$

- Per Capita Gross Domestic Product = \$3,139
- Life expectancy = 63.6 years
- Adult literacy = 61%
- Gross school enrolment = 62%
- Per Capita gross domestic product (PGDP) index =

$$\frac{\log{(\$3,139)} - \log{(\$100)}}{\log{(\$40,000)} - \log{(\$100)}} = 0.58$$

- Life expectancy = (63.6 25) / (85 25) = 0.64
- Adult literacy index = (61 0) / (100 0) = 0.61
- Gross school enrolment index = (62 0) / (100 0) = 0.62
- Education index = $\frac{2}{3} \times 0.61 + \frac{1}{3} \times 0.62 = 0.61$
- HDI = $\frac{1}{3} \times 0.58 + \frac{1}{3} \times 0.64 + \frac{1}{3} \times 0.61 = 0.61$

2004 HDI Table: Top Ten Countries

Rank	Country	HDI	LE Index	Edu Index	GDP Index
1	Norway	0.965	0.909	0.993	0.993
2	Iceland	0.960	0.931	0.981	0.968
3	Australia	0.957	0.925	0.993	0.954
4	Ireland	0.956	0.882	0.990	0.995
5	Sweden	0.951	0.922	0.982	0.949
6	Canada	0.950	0.919	0.970	0.959
7	Japan	0.949	0.953	0.945	0.948
8	United States	0.948	0.875	0.971	0.999
9	Switzerland	0.947	0.928	0.946	0.968
10	Netherlands	0.947	0.892	0.987	0.962

• Criticism: HDI is not sensitive to inequality across persons

- Criticism: HDI is not sensitive to inequality across persons
- Two proposals

- Criticism: HDI is not sensitive to inequality across persons
- Two proposals
 - Hicks (1997)

- Criticism: HDI is not sensitive to inequality across persons
- Two proposals
 - Hicks (1997)
 - Foster, López-Calva, Székely (2005)

Hicks (1997): Inequality Adjusted HDI (IAHDI)

Table 5. Country rankings by HDI and IAHDI

Country	HDI	TAHDI	Change in ranks	
Hong Kong	1	1	0	
Costa Rica	2	3	-1	
Korea (Rep.)	3	2	1	
Chile	4	4	0	
Venezuela	5	7	-2	
Panama	6	8	-2	
Mexico	7	10	-3	
Colombia	8	9	-1	
Thailand	9	5	4	
Malaysia	10	6	4	
Brazil	11	12	-1	
Peru	12	14	-2	
Dom. Rep.	13	15	-2	
Sri Lanka	14	11	3 2	
Philippines	15	13		
Nicaragua	16	16	0	
Guatemala	17	19	-2	
Honduras	18	17	1	
Zimbabwe	19	18	1	
Bangladesh	20	20	0	

Table 1. HDI-Generalized Mean correcting for within-inequality by State, 2000

	e=0		ε=3	ε=3	
	HDI-GM	Ranking	HDI-GM	Ranking	Rank change
Aguascalientes	0.7001	5	0.5811	3	2
Baja California	0.7176	2	0.6150	2	0
Baja California Sur	0.7038	3	0.5787	4	-1
Campeche	0.6734	15	0.5473	7	8
Chiapas	0.5735	32	0.3797	31	1
Chihuahua	0.6739	14	0.5069	18	-4
Coahuila	0.6957	6	0.5637	6	0
Colima	0.6884	7	0.5428	10	-3
Distrito Federal	0.7403	1	0.6376	1	0
Durango	0.6608	20	0.4708	23	-3
Estado de México	0.6824	9	0.5185	14	-5
Guanajuato	0.6546	22	0.4937	19	3
Guerrero	0.5968	30	0.3995	30	0
Hidalgo	0.6449	24	0.4784	21	3
Jalisco	0.6772	12	0.5246	13	-1
Michoacán	0.6363	26	0.4509	26	0
Morelos	0.6691	16	0.5139	16	0
Nayarit	0.6638	18	0.4898	20	-2
Nuevo León	0.7021	4	0.5783	5	-1

• Does not aggregate across individuals and then normalize like HDI

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates
- Income varies across individuals

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates
- Income varies across individuals
- Enrolment rates and literacy rates varies across households

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates
- Income varies across individuals
- Enrolment rates and literacy rates varies across households
- Infant survival rate (health variable) varies across municipalities

• N persons and D dimensions

• N persons and D dimensions

• Normalized achievement vector:
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$$

• N persons and D dimensions

• Normalized achievement vector:
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$$

• x_{nd} is the achievement of the n^{th} person in the d^{th} dimension

• N persons and D dimensions

• Normalized achievement vector:
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$$

- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
- $x_{nd} > 0 \ \forall n, d$

- N persons and D dimensions
- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$
- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
- $x_{nd} > 0 \ \forall n, d$
- ullet Denote: $x_{n*}=(x_{n1},...,x_{nD}) orall n$ and $x_{*d}=(x_{1d},...,x_{Nd}) \, orall d$

- N persons and D dimensions
- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$
- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
- $x_{nd} > 0 \ \forall n, d$
- ullet Denote: $x_{n*}=\left(x_{n1},...,x_{nD}
 ight) orall n$ and $x_{*d}=\left(x_{1d},...,x_{Nd}
 ight) orall d$
- ullet x_{n*} is the achievement vector of the n^{th} person

- N persons and D dimensions
- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$
- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
- $x_{nd} > 0 \ \forall n, d$
- ullet Denote: $x_{n*}=(x_{n1},...,x_{nD}) orall n$ and $x_{*d}=(x_{1d},...,x_{Nd}) \, orall d$
- x_{n*} is the achievement vector of the n^{th} person
- x_{*d} is the achievement vector of the d^{th} dimension

ullet For a vector ${f h}=(\mathit{h}_1,...,\mathit{h}_M)$, Generalized mean of order γ is

ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is

•
$$\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M}\left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$$
 for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$

ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is

•
$$\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} \left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$$
 for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$

• If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ ightarrowArithmetic Mean

- ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is
 - $\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M}\left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$
 - If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ \to Arithmetic Mean
 - If $\gamma=$ 0, then $\mu_0\left(\mathbf{h}\right)=\left(h_1 imes... imes h_M
 ight)^{1/M} o$ Geometric Mean

ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is

•
$$\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} \left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$$
 for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$

- If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ ightarrowArithmetic Mean
- If $\gamma=0$, then $\mu_0\left(\mathbf{h}\right)=\left(h_1 imes... imes h_M\right)^{1/M} o$ Geometric Mean
- \bullet If $\gamma=-1$, then $\mu_{-1}\left(\mathbf{h}\right)=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}}$ \to Harmonic Mean

- ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is
 - $\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} \left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$
 - If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ \to Arithmetic Mean
 - If $\gamma=0$, then $\mu_0\left(\mathbf{h}\right)=\left(h_1 imes... imes h_M\right)^{1/M} o$ Geometric Mean
 - If $\gamma=-1$, then $\mu_{-1}\left(\mathbf{h}\right)=\frac{M}{h_{1}^{-1}+...+h_{M}^{-1}}$ ightarrow Harmonic Mean
- ullet As γ falls, more emphasis is given on lower values

- ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is
 - $\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} \left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$
 - If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ \to Arithmetic Mean
 - If $\gamma=0$, then $\mu_0\left(\mathbf{h}\right)=\left(h_1 imes... imes h_M\right)^{1/M} o$ Geometric Mean
 - If $\gamma=-1$, then $\mu_{-1}\left(\mathbf{h}\right)=\frac{M}{h_{1}^{-1}+...+h_{M}^{-1}}$ \to Harmonic Mean
- ullet As γ falls, more emphasis is given on lower values
 - If $\gamma = -\infty$, then $\mu_{-\infty}(\mathbf{h}) = \min(h_1, ..., h_M)$

- ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is
 - $\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} \left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$
 - If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ \to Arithmetic Mean
 - If $\gamma=0$, then $\mu_0\left(\mathbf{h}\right)=\left(h_1 imes... imes h_M\right)^{1/M} o$ Geometric Mean
 - If $\gamma=-1$, then $\mu_{-1}\left(\mathbf{h}\right)=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}}$ \to Harmonic Mean
- ullet As γ falls, more emphasis is given on lower values
 - If $\gamma = -\infty$, then $\mu_{-\infty}(\mathbf{h}) = \min(h_1, ..., h_M)$
- ullet As γ rises, more emphasis is given on higher values

- ullet For a vector ${f h}=(h_1,...,h_M)$, Generalized mean of order γ is
 - $\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} \left(h_{1}^{\gamma} + ... + h_{M}^{\gamma}\right)\right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_{\gamma}(\mathbf{h}) = \left(h_{1} \times ... \times h_{M}\right)^{1/M}$ for $\gamma = 0$
 - If $\gamma=1$, then $\mu_1\left(\mathbf{h}\right)=\frac{h_1+\ldots+h_M}{M}$ ightarrowArithmetic Mean
 - If $\gamma=0$, then $\mu_0\left(\mathbf{h}\right)=\left(h_1 imes... imes h_M\right)^{1/M} o$ Geometric Mean
 - If $\gamma=-1$, then $\mu_{-1}\left(\mathbf{h}\right)=\frac{M}{h_{1}^{-1}+...+h_{M}^{-1}}$ \to Harmonic Mean
- ullet As γ falls, more emphasis is given on lower values
 - If $\gamma = -\infty$, then $\mu_{-\infty}(\mathbf{h}) = \min(h_1, ..., h_M)$
- ullet As γ rises, more emphasis is given on higher values
 - If $\gamma = \infty$, then $\mu_{\infty}(\mathbf{h}) = \max(h_1,...,h_M)$

• Normalization (NM). If $x_{nd} = \delta$ for all n, d, then W(X)= δ

- Normalization (NM). If $x_{nd} = \delta$ for all n, d, then W(X)= δ
- Symmetry in Persons (SP). Personal identity does not matter

- Normalization (NM). If $x_{nd} = \delta$ for all n, d, then W(X)= δ
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). W(X) is non-decreasing in x_{nd} for all n, d.

- Normalization (NM). If $x_{nd} = \delta$ for all n, d, then W(X)= δ
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). W(X) is non-decreasing in x_{nd} for all n, d.
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall well-being.

- Normalization (NM). If $x_{nd} = \delta$ for all n, d, then $W(X) = \delta$
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). W(X) is non-decreasing in x_{nd} for all n, d.
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall well-being.
- Subgroup Consistency (SC). If the well-being of one subgroup rises and the other is unaltered, then overall well-being rise

- Normalization (NM). If $x_{nd} = \delta$ for all n, d, then W(X)= δ
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). W(X) is non-decreasing in x_{nd} for all n, d.
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall well-being.
- Subgroup Consistency (SC). If the well-being of one subgroup rises and the other is unaltered, then overall well-being rise
- Continuity (CN). W(H) does not change abruptly due to a change in any of the elements in H

• The simple average of the whole matrix H

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - First stage: simple average across dimensions. Second stage: simple average across persons

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - Pirst stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions

$$\bullet \ \ \mathsf{H} = \left[\begin{array}{ccccc} & \mathsf{Income} & \mathsf{Education} & \mathsf{Health} \\ \mathsf{Person} \ 1 & 0.8 & 0.8 & 0.3 \\ \mathsf{Person} \ 2 & 0.4 & 0.3 & 0.8 \\ \mathsf{Person} \ 3 & 0.3 & 0.4 & 0.4 \\ \end{array} \right]$$

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions

$$\bullet \ \ \mathsf{H} = \left[\begin{array}{ccccc} & \mathsf{Income} & \mathsf{Education} & \mathsf{Health} \\ \mathsf{Person} \ 1 & 0.8 & 0.8 & 0.3 \\ \mathsf{Person} \ 2 & 0.4 & 0.3 & 0.8 \\ \mathsf{Person} \ 3 & 0.3 & 0.4 & 0.4 \\ \end{array} \right]$$

① First stage: average across persons yields (0.5, 0.5, 0.5). Second stage: average across dimensions yields 0.5. Thus, $W_A=0.5$

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions

		Income	Education	Health	1
	Person 1	8.0	0.8	0.3	l
• H =	Person 1 Person 2	0.8 0.4	0.3	8.0	١
	Person 3	0.3	0.4	0.4	

- **1** First stage: average across persons yields (0.5, 0.5, 0.5). Second stage: average across dimensions yields 0.5. Thus, $W_A = 0.5$
- ② First stage: average across dimensions yields (0.63, 0.5, 0.37). Second stage: average across persons yields 0.5. Thus, $W_A = 0.5$

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - Pirst stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions

		Income	Education	Health	1
. ш	Person 1	8.0	0.8	0.3	l
• H =	Person 2	0.8 0.4	0.3	8.0	l
	Person 3	0.3	0.4	0.4	

- ① First stage: average across persons yields (0.5, 0.5, 0.5). Second stage: average across dimensions yields 0.5. Thus, $W_A = 0.5$
- ② First stage: average across dimensions yields (0.63, 0.5, 0.37). Second stage: average across persons yields 0.5. Thus, $W_A = 0.5$
- Both sequences of aggregation yield the same result. Path Independence (PI) - sequence of aggregation is not important (Foster, López-Calva, Székely (2005)

		Income	Education	Health
• X =	Person 1	0.8	0.8	0.3
• ^ —	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

Given achievement matrix

		Income	Education	Health
- v _	Person 1	0.8	0.8	0.3
• X =	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

• Policy maker's budget - one indivisible dollar (\$1)

		Income	Education	Health
• X =	Person 1	0.8	8.0	0.3
• ^ –	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units

		Income	Education	Health
• X =	Person 1	0.8	8.0	0.3
• ^ –	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- ullet Let well-being be calculated by applying $W_{\mathcal{A}}$

		Income	Education	Health
- V —	Person 1	0.8	8.0	0.3
• X =	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- ullet Let well-being be calculated by applying $W_{\mathcal{A}}$
- Question: Where should the dollar be spent?

		Income	Education	Health
• X =	Person 1	0.8	0.8	0.3
• ^ –	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- ullet Let well-being be calculated by applying $W_{\mathcal{A}}$
- Question: Where should the dollar be spent?
 - Answer: Anywhere in the matrix. Insensitive to inequality

		Income	Education	Health
• X =	Person 1	0.8	8.0	0.3
• ^ –	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_A
- Question: Where should the dollar be spent?
 - Answer: Anywhere in the matrix. Insensitive to inequality
- Evaluation of W_A

		Income	Education	Health
- v _	Person 1	0.8	8.0	0.3
• X =	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- ullet Let well-being be calculated by applying $W_{\mathcal{A}}$
- Question: Where should the dollar be spent?
 - Answer: Anywhere in the matrix. Insensitive to inequality
- Evaluation of W_A
 - W_A satisfies NM, SP, M, PRI, SC, CN, PI

		Income	Education	Health
• X =	Person 1	0.8	8.0	0.3
• ^ –	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Policy maker's budget one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_A
- Question: Where should the dollar be spent?
 - Answer: Anywhere in the matrix. Insensitive to inequality
- Evaluation of W_A
 - W_A satisfies NM, SP, M, PRI, SC, CN, PI
 - ullet W_A is not sensitive to inequality across persons

• The **first**: distribution sensitive inequality (Kolm 1977)

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)

- The first: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)
 - B is a bistochastic matrix

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)
 - B is a bistochastic matrix

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \end{bmatrix}$

- The first: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)
 - B is a bistochastic matrix

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}, \ \bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

• If \bar{X} is obtained from X, then $W(\bar{X}) > W(X)$

- The first: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)
 - B is a bistochastic matrix

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}, \ \bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \end{bmatrix}$$

- If \bar{X} is obtained from X, then $W(\bar{X}) > W(X)$
- Would we get different results if W_A is applied?

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)
 - B is a bistochastic matrix

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}, \ \bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \end{bmatrix}$$

- If \bar{X} is obtained from X, then $W(\bar{X}) > W(X)$
- Would we get different results if W_A is applied?
 - $W_A(X) = 0.5$

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases well-being
 - Uniform Majorization (UM): W(BX) > W(X)
 - B is a bistochastic matrix

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ \textbf{0.35} & \textbf{0.35} & \textbf{0.6} \\ \textbf{0.35} & \textbf{0.35} & \textbf{0.6} \end{bmatrix}$

- If \bar{X} is obtained from X, then $W(\bar{X}) > W(X)$
- Would we get different results if W_A is applied?
 - $W_A(X) = 0.5$
 - $W_A(\bar{X}) = 0.5$

Indices Sensitive to Inequality Across Persons

• Indices sensitive to the first form of inequality across persons

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard $S\left(\cdot\right)=\mu_{1}\left(\cdot\right)\left[1-G\left(\cdot\right)\right]$. Second stage: uses simple average across dimensions $\mu_{1}\left(\cdot\right)$

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard $S\left(\cdot\right)=\mu_{1}\left(\cdot\right)\left[1-G\left(\cdot\right)\right]$. Second stage: uses simple average across dimensions $\mu_{1}\left(\cdot\right)$

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard $S\left(\cdot\right)=\mu_{1}\left(\cdot\right)\left[1-G\left(\cdot\right)\right]$. Second stage: uses simple average across dimensions $\mu_{1}\left(\cdot\right)$
 - Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$
 - The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.22, 0.22, 0.22). The first stage achievement vector is (0.39, 0.39, 0.39).

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard $S\left(\cdot\right)=\mu_{1}\left(\cdot\right)\left[1-G\left(\cdot\right)\right]$. Second stage: uses simple average across dimensions $\mu_{1}\left(\cdot\right)$
 - Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$
 - The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.22, 0.22, 0.22). The first stage achievement vector is (0.39, 0.39, 0.39).
 - ullet The second stage average yields μ_1 (0.39, 0.39, 0.39) = 0.39.

$$\bullet \ \, \mathsf{Example:} \ \, \bar{\mathsf{X}} = \left[\begin{array}{cccc} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \end{array} \right]$$

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

• The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

• The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).

0

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

- The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).
- •
- The second stage average yields μ_1 (0.4, 0.4, 0.42) = 0.41.

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

- The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).
- •
- The second stage average yields μ_1 (0.4, 0.4, 0.42) = 0.41.
- Thus, $W_H(X) = 0.39$ and $W_H(\bar{X}) = 0.41$

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

- The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).
- •
- ullet The second stage average yields μ_1 (0.4, 0.4, 0.42) = 0.41.
- Thus, $W_H(X) = 0.39$ and $W_H(\bar{X}) = 0.41$
- Gini Index not subgroup consistent

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

- The first stage **average** across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).
- •
- ullet The second stage average yields μ_1 (0.4, 0.4, 0.42) = 0.41.
- Thus, $W_H(X) = 0.39$ and $W_H(\bar{X}) = 0.41$
- Gini Index not subgroup consistent
- Hicks Index satisfies NM, SP, M, PRI, CN, SICS but not SC, PI

Foster, López-Calva, Székely (2005) Index (W_F)

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - The same power of generalized mean \rightarrow the W_F satisfies path independence (PI)

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - ullet The same power of generalized mean \to the W_F satisfies path independence (PI)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - \bullet The same power of generalized mean \to the $W_{\emph{F}}$ satisfies path independence (PI)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

• First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - \bullet The same power of generalized mean \to the $W_{\emph{F}}$ satisfies path independence (PI)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.4.

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - \bullet The same power of generalized mean \to the $W_{\emph{F}}$ satisfies path independence (PI)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.4.
- Reversed order of aggregation

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - \bullet The same power of generalized mean \to the $W_{\emph{F}}$ satisfies path independence (PI)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.4.
- Reversed order of aggregation
 - The first stage yields (0.46, 0.4, 0.36) and the second stage yields $W_F = 0.4$.

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_{\alpha}\left(\cdot\right)$. Second stage: aggregates across dimensions using $\mu_{\alpha}\left(\cdot\right)$; and vice versa. $\alpha\leq1$
 - \bullet The same power of generalized mean \to the $W_{\emph{F}}$ satisfies path independence (PI)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.4.
- Reversed order of aggregation
 - The first stage yields (0.46, 0.4, 0.36) and the second stage yields $W_F = 0.4$.
- The order of aggregation does not matter.

$$\bullet \ \, \mathsf{Example:} \ \, \bar{\mathsf{X}} = \left[\begin{array}{cccc} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{array} \right]$$

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

• First Stage: Generalized mean across persons yields (0.41, 0.41, 0.42).

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

- First Stage: Generalized mean across persons yields (0.41, 0.41, 0.42).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.41.

$$\bullet \ \, \mathsf{Example:} \ \, \bar{\mathsf{X}} = \left[\begin{array}{cccc} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \end{array} \right]$$

- First Stage: Generalized mean across persons yields (0.41, 0.41, 0.42).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.41.
- ullet Thus, $W_F\left(X
 ight)=0.40$ and $W_F\left(ar{X}
 ight)=0.41$

$$\bullet \ \, \mathsf{Example:} \ \, \bar{\mathsf{X}} = \left[\begin{array}{cccc} 0.8 & 0.8 & 0.3 \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \\ \mathbf{0.35} & \mathbf{0.35} & \mathbf{0.6} \end{array} \right]$$

- First Stage: Generalized mean across persons yields (0.41, 0.41, 0.42).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.41.
- ullet Thus, $W_F\left(X
 ight)=0.40$ and $W_F\left(ar{X}
 ight)=0.41$
- Foster et. al. index satisfies NM, LH, SP, M, PRI, CN, SC, PI, and UM

• Example:
$$\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$$

- First Stage: Generalized mean across persons yields (0.41, 0.41, 0.42).
- The second stage **generalized mean** or order -2 yields μ_{-2} (0.4, 0.4, 0.4) = 0.41.
- ullet Thus, $W_F\left(X
 ight)=0.40$ and $W_F\left(ar{X}
 ight)=0.41$
- Foster et. al. index satisfies NM, LH, SP, M, PRI, CN, SC, PI, and UM
- ullet Therefore, both W_H and W_F are sensitive to inequality across persons

• Reconsider the achievement matrix

• Reconsider the achievement matrix

• X =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

Reconsider the achievement matrix

• X =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

ullet Let well-being be calculated by applying W_H or W_F

• Reconsider the achievement matrix

		Dim 1	Dim 2	Dim 3
• X =	Person 1	0.8	0.8	0.3
• ^ _	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Let well-being be calculated by applying W_H or W_F
- Question: Where should the dollar be spent?

Reconsider the achievement matrix

		Dim 1	Dim 2	Dim 3
• X =	Person 1	8.0	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Let well-being be calculated by applying W_H or W_F
- Question: Where should the dollar be spent?
 - Using W_H: Answer: Either on dim 1 of individual 3, or on dim 2 of individual 2, or on dim 3 of individual 1

Reconsider the achievement matrix

		Dim 1	Dim 2	Dim 3
• X =	Person 1	0.8	0.8	0.3
• X =	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Let well-being be calculated by applying W_H or W_F
- Question: Where should the dollar be spent?
 - Using W_H: Answer: Either on dim 1 of individual 3, or on dim 2 of individual 2, or on dim 3 of individual 1
 - Using W_F: Answer: Either on dim 1 of individual 3, or on dim 2 of individual 2, or on dim 3 of individual 1

		Dim 1	Dim 2	Dim 3
H =	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

• Where should the dollar be spent from an ethical point of view?

H =		Dim 1	Dim 2	Dim 3
	Person 1	8.0	8.0	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$

H =		Dim 1	Dim 2	Dim 3
	Person 1	8.0	8.0	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
 - Spend the dollar on dim 1 of person 3

H =		Dim 1	Dim 2	Dim 3
	Person 1	8.0	8.0	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
 - Spend the dollar on dim 1 of person 3
 - Achievement vector: (0.63, 0.5, 0.4)

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
 - Spend the dollar on dim 1 of person 3
 - Achievement vector: (0.63, 0.5, 0.4)
 - Spend the dollar on dim 2 of person 2

H =		Dim 1	Dim 2	Dim 3
	Person 1	8.0	8.0	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
 - Spend the dollar on dim 1 of person 3
 - Achievement vector: (0.63, 0.5, 0.4)
 - Spend the dollar on dim 2 of person 2
 - Achievement vector: (0.63, 0.53, 0.37)

H =		Dim 1	Dim 2	Dim 3
	Person 1	8.0	8.0	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
 - Spend the dollar on dim 1 of person 3
 - Achievement vector: (0.63, 0.5, 0.4)
 - Spend the dollar on dim 2 of person 2
 - Achievement vector: (0.63, 0.53, 0.37)
 - Spend the dollar on dim 2 of person 2

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- Where should the dollar be spent from an ethical point of view?
 - Suppose, capability of the n^{th} individual = $(x_{n1} + x_{n2} + x_{n3})/3$
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
 - Spend the dollar on dim 1 of person 3
 - Achievement vector: (0.63, 0.5, 0.4)
 - Spend the dollar on dim 2 of person 2
 - Achievement vector: (0.63, 0.53, 0.37)
 - Spend the dollar on dim 2 of person 2
 - Achievement vector: (0.67, 0.5, 0.37)

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{cccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

These indices can also not differentiate the following two allocations

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

 H' is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

- H' is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons association sensitivity

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

- H' is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons association sensitivity
- Association Sensitivity

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

- H' is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons association sensitivity
- Association Sensitivity
 - \bullet Strictly decreasing in increasing association (SDIA) W(H') < W(H)

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

- H' is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons association sensitivity
- Association Sensitivity
 - \bullet Strictly decreasing in increasing association (SDIA) W(H') < W(H)
 - H' is obtained from H by a sequence of association increasing transfers

$$\bullet \ \mathsf{H} = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{array} \right], \ \mathsf{H}' = \left[\begin{array}{ccc} 0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0.4} & 0.8 \\ 0.3 & \mathbf{0.3} & 0.4 \end{array} \right]$$

- H' is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons association sensitivity
- Association Sensitivity
 - \bullet Strictly decreasing in increasing association (SDIA) W(H') < W(H)
 - ullet H' is obtained from H by a sequence of association increasing transfers
- Proposition: A well-being index that aggregates across persons first and then across dimensions is not sensitive to association among dimensions

 Corollary: No path independent well-being index is sensitive to association among dimensions

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- Possible association sensitive well-being Index (W):

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- ullet Possible association sensitive well-being Index (\mathcal{W}) :
 - First stage: aggregates across dimensions by $\mu_{\beta}\left(\cdot\right)$. Second stage: aggregates across persons by $\mu_{\alpha}\left(\cdot\right)$

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- ullet Possible association sensitive well-being Index (\mathcal{W}) :
 - First stage: aggregates across dimensions by $\mu_{\beta}\left(\cdot\right)$. Second stage: aggregates across persons by $\mu_{\alpha}\left(\cdot\right)$
 - $W(X) = \mu_{\alpha} \left(\mu_{\beta} \left(x_{1*} \right), ..., \mu_{\beta} \left(x_{N*} \right) \right)$

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- ullet Possible association sensitive well-being Index (\mathcal{W}) :
 - First stage: aggregates across dimensions by $\mu_{\beta}\left(\cdot\right)$. Second stage: aggregates across persons by $\mu_{\alpha}\left(\cdot\right)$
 - $W(X) = \mu_{\alpha} \left(\mu_{\beta} \left(x_{1*} \right), ..., \mu_{\beta} \left(x_{N*} \right) \right)$
- ullet ${\cal W}$ satisfies NM, LH, SP, M, PRI, CN, SC, UM, and

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- ullet Possible association sensitive well-being Index (\mathcal{W}) :
 - First stage: aggregates across dimensions by $\mu_{\beta}\left(\cdot\right)$. Second stage: aggregates across persons by $\mu_{\alpha}\left(\cdot\right)$
 - $W(X) = \mu_{\alpha} \left(\mu_{\beta} \left(x_{1*} \right), ..., \mu_{\beta} \left(x_{N*} \right) \right)$
- ullet ${\cal W}$ satisfies NM, LH, SP, M, PRI, CN, SC, UM, and
 - ullet SDIA if and only if $lpha<eta\leq 1$

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

ullet Where should the dollar be spent according to ${\mathcal W}$?

		Dim 1	Dim 2	Dim 3
ш	Person 1	8.0	8.0	0.3
п —	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - ullet Suppose, lpha=-2 and eta=0.1

		Dim 1	Dim 2	Dim 3
ш	Person 1	8.0	8.0	0.3
п —	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - ullet Suppose, lpha=-2 and eta=0.1
 - Spend the dollar on dim 1 of person 3

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - ullet Suppose, lpha=-2 and eta=0.1
 - Spend the dollar on dim 1 of person 3
 - Total well-being is = 0.465

		Dim 1	Dim 2	Dim 3
ш	Person 1	8.0	8.0	0.3
п —	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - ullet Suppose, lpha=-2 and eta=0.1
 - Spend the dollar on dim 1 of person 3
 - Total well-being is = 0.465
 - Spend the dollar on dim 2 of person 2

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - ullet Suppose, lpha=-2 and eta=0.1
 - Spend the dollar on dim 1 of person 3
 - Total well-being is = 0.465
 - Spend the dollar on dim 2 of person 2
 - Total well-being is = 0.456

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - Suppose, $\alpha=-2$ and $\beta=0.1$
 - Spend the dollar on dim 1 of person 3
 - Total well-being is = 0.465
 - Spend the dollar on dim 2 of person 2
 - Total well-being is = 0.456
 - Spend the dollar on dim 3 of person 1

H =		Dim 1	Dim 2	Dim 3
	Person 1	0.8	0.8	0.3
	Person 2	0.4	0.3	0.8
	Person 3	0.3	0.4	0.4

- ullet Where should the dollar be spent according to ${\mathcal W}$?
 - Suppose, $\alpha=-2$ and $\beta=0.1$
 - Spend the dollar on dim 1 of person 3
 - Total well-being is = 0.465
 - Spend the dollar on dim 2 of person 2
 - Total well-being is = 0.456
 - Spend the dollar on dim 3 of person 1
 - Total well-being is = 0.452

Application to Mexico (Income, Education, and Health)

	State	HDI (W _A)		lpha = -2		$egin{array}{c} \mathcal{W} \ eta = -1 \ lpha = -3 \ \end{array}$	
San	Luis Potosí	0.716	(24)	0.258	(21)	0.223	(22)
Sina	aloa	0.751	(17)	0.268	(20)	0.232	(18)
Son	ora	0.790	(07)	0.386	(06)	0.309	(06)
Tal	basco	0.719	(22)	0.296	(15)	0.254	(14)
Tan	naulipas	0.771	(12)	0.349	(80)	0.287	(80)
Tla	xcala	0.736	(19)	0.309	(13)	0.258	(12)
Ver	acruz de I dIL	0.698	(27)	0.213	(29)	0.193	(29)

Application to Mexico (Income, Education, and Health)

	State	HDI (W _A)		$\alpha = -2$		$egin{array}{c} \mathcal{W} \ eta = -1 \ lpha = -3 \end{array}$	
	San Luis Potosí	0.716	(24)	0.258	(21)	0.223	(22)
	Sinaloa	0.751	(17)	0.268	(20)	0.232	(18)
	Sonora	0.790	(07)	0.386	(06)	0.309	(06)
	Tabasco	0.719	(22)	0.296	(15)	0.254	(14)
	Tamaulipas	0.771	(12)	0.349	(80)	0.287	(80)
	Tlaxcala	0.736	(19)	0.309	(13)	0.258	(12)
	Veracruz de I dIL	0.698	(27)	0.213	(29)	0.193	(29)

• A sequence of association increasing transfers for Tabasco

Application to Mexico (Income, Education, and Health)

	State	HDI (W_A)		lpha = -2		$egin{array}{c} \mathcal{W} \ eta = -1 \ lpha = -3 \end{array}$	
	San Luis Potosí	0.716	(24)	0.258	(21)	0.223	(22)
	Sinaloa	0.751	(17)	0.268	(20)	0.232	(18)
	Sonora	0.790	(07)	0.386	(06)	0.309	(06)
	Tabasco	0.719	(22)	0.296	(15)	0.254	(14)
	Tamaulipas	0.771	(12)	0.349	(80)	0.287	(80)
	Tlaxcala	0.736	(19)	0.309	(13)	0.258	(12)
	Veracruz de I dIL	0.698	(27)	0.213	(29)	0.193	(29)

• A sequence of association increasing transfers for Tabasco

•	State	HDI (W_A)		W_F		\mathcal{W}	
				$\alpha = -2$		$(\beta = -1, \alpha = -3)$	
	Tabasco	0.719	(22)	0.296	(15)	0.244	(15)

• Additive Indices are not sensitive to inequality across persons

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important
- Aggregation must take place across dimensions first, and then across persons

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important
- Aggregation must take place across dimensions first, and then across persons
- We treated dimensions symmetrically; we could also apply weighted generalized mean

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important
- Aggregation must take place across dimensions first, and then across persons
- We treated dimensions symmetrically; we could also apply weighted generalized mean
- A well-being index yet to be derived that takes different elasticity of substitution into account

• Study of inequality is important on its own

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- ullet Weighted generalized mean of order γ

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- ullet Weighted generalized mean of order γ

•
$$\mu_{\gamma,a} = \mu_{\gamma}(h_1, ..., h_M; a_1, ..., a_M) = \left(\frac{1}{M} \sum_{m=1}^{M} a_m h_m^{\gamma}\right)^{1/\gamma};$$

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- ullet Weighted generalized mean of order γ
 - $\mu_{\gamma,a} = \mu_{\gamma}(h_1, ..., h_M; a_1, ..., a_M) = \left(\frac{1}{M} \sum_{m=1}^{M} a_m h_m^{\gamma}\right)^{1/\gamma};$
 - ullet where $\gamma
 eq 0$, $a_m \geq 0$ for all m, and $\sum_{m=1}^M a_m = 1$

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- ullet Weighted generalized mean of order γ

•
$$\mu_{\gamma,a} = \mu_{\gamma}(h_1,...,h_M; a_1,...,a_M) = \left(\frac{1}{M}\sum_{m=1}^M a_m h_m^{\gamma}\right)^{1/\gamma};$$

- where $\gamma
 eq 0$, $a_m \geq 0$ for all m, and $\sum_{m=1}^M a_m = 1$
- $\mu_{\gamma,a} = \mu_{\gamma}(h_1, ..., h_M; a_1, ..., a_M) = \prod_{m=1}^{M} h_m^{a_m}; \gamma = 0$

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- ullet Weighted generalized mean of order γ

•
$$\mu_{\gamma,a} = \mu_{\gamma}(h_1, ..., h_M; a_1, ..., a_M) = \left(\frac{1}{M} \sum_{m=1}^{M} a_m h_m^{\gamma}\right)^{1/\gamma};$$

- where $\gamma \neq 0$, $a_m \geq 0$ for all m, and $\sum_{m=1}^{M} a_m = 1$
- $\mu_{\gamma,a} = \mu_{\gamma}(h_1, ..., h_M; a_1, ..., a_M) = \prod_{m=1}^{M} h_m^{a_m}; \gamma = 0$
- $\gamma=1$: Weighted AM $\left(\mu_{1,a}\right)$; $\gamma=0$: Weighted GM $\left(\mu_{0,a}\right)$; $\gamma=-1$: Weighted HM $\left(\mu_{-1,a}\right)$

 \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$

- \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$
- Symmetry in Persons (SP). Personal identity does not matter

- \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change

- \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.

- \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.
- Decomposability (D). Overall inequality can be expressed as a general function of the subgroup means, population sizes and inequality values.

- \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.
- Decomposability (D). Overall inequality can be expressed as a general function of the subgroup means, population sizes and inequality values.
- Subgroup Consistency (SC). If the inequality of one subgroup rises and the other is unaltered, then overall inequality rise

- \bullet Normalization (NM). If each person has the same achievement vector, $I(X)=\mathbf{0}$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.
- Decomposability (D). Overall inequality can be expressed as a general function of the subgroup means, population sizes and inequality values.
- Subgroup Consistency (SC). If the inequality of one subgroup rises and the other is unaltered, then overall inequality rise
- Continuity (CN). I(H) does not change abruptly due to a change in any of the elements in H

- Bourguignon Index (1999)
- Maasoumi Index (1986, 1999)

- Bourguignon Index (1999)
- Maasoumi Index (1986, 1999)
- Tsui Index (1995, 1999)

- Bourguignon Index (1999)
- Maasoumi Index (1986, 1999)
- Tsui Index (1995, 1999)
- Gajdos and Weymark Index (2005)

- Bourguignon Index (1999)
- Maasoumi Index (1986, 1999)
- Tsui Index (1995, 1999)
- Gajdos and Weymark Index (2005)
- Decand and Lugo (2008)

• First, derives a well-being index

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.
- Second stage: Aggregates across persons by the aggregator function: $W = \frac{1}{N} \sum_{i=1}^{N} U_n$

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.
- Second stage: Aggregates across persons by the aggregator function: $W = \frac{1}{N} \sum_{i=1}^{N} U_n$
- ullet Defines $ar{\mathbb{W}}=ar{U}$, where $ar{U}=\mu_{eta,\mathsf{a}}^{lpha}\left[\mu_{1}\left(x_{*1}
 ight)$, ..., $\mu_{1}\left(x_{*D}
 ight)
 ight]$

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.
- Second stage: Aggregates across persons by the aggregator function: $W = \frac{1}{N} \sum_{i=1}^{N} U_n$
- ullet Defines $ar{\mathbb{W}}=ar{U}$, where $ar{U}=\mu_{eta,\mathsf{a}}^{lpha}\left[\mu_{1}\left(x_{*1}
 ight),...,\mu_{1}\left(x_{*D}
 ight)
 ight]$
- Inequality index

$$I_B=1-rac{\mathsf{W}}{ar{ar{\mathsf{W}}}}$$

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.
- Second stage: Aggregates across persons by the aggregator function: $W = \frac{1}{N} \sum_{i=1}^{N} U_n$
- ullet Defines $ar{\mathbf{W}}=ar{\mathbf{U}}$, where $ar{\mathbf{U}}=\mu_{eta,\mathsf{a}}^{lpha}\left[\mu_{1}\left(\mathbf{x}_{*1}
 ight),...,\mu_{1}\left(\mathbf{x}_{*D}
 ight)
 ight]$
- Inequality index

$$I_B=1-rac{\mathsf{W}}{ar{ar{\mathsf{W}}}}$$

 $oldsymbol{\circ}$ eta is substitution parameter and lpha is inequality aversion parameter

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.
- Second stage: Aggregates across persons by the aggregator function: $W = \frac{1}{N} \sum_{i=1}^{N} U_n$
- ullet Defines $ar{\mathbb{W}}=ar{U}$, where $ar{U}=\mu_{eta,a}^{lpha}\left[\mu_{1}\left(x_{*1}
 ight),...,\mu_{1}\left(x_{*D}
 ight)
 ight]$
- Inequality index

$$I_B=1-rac{\mathsf{W}}{ar{ar{\mathsf{W}}}}$$

- $oldsymbol{\circ}$ eta is substitution parameter and lpha is inequality aversion parameter
- IB satisfies NM, SP, SI, D, RI, and both forms of inequality

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_n = \mu_{\beta,a}^{\alpha}\left(x_{n1},...,x_{nD}\right)$; $\beta < 1$, $0 < \alpha < 1$.
- Second stage: Aggregates across persons by the aggregator function: $W = \frac{1}{N} \sum_{i=1}^{N} U_n$
- ullet Defines $ar{\mathbb{W}}=ar{U}$, where $ar{U}=\mu_{eta,a}^{lpha}\left[\mu_{1}\left(x_{*1}
 ight),...,\mu_{1}\left(x_{*D}
 ight)
 ight]$
- Inequality index

$$I_{\mathcal{B}}=1-rac{\mathsf{W}}{ar{ar{\mathsf{W}}}}$$

- $oldsymbol{\circ}$ is substitution parameter and lpha is inequality aversion parameter
- I_B satisfies NM, SP, SI, D, RI, and both forms of inequality
- ullet Inequality increases with correlation when lpha < eta

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• First stage aggregation across dimensions yields

$$U_1 = 0.68$$
, $U_2 = 0.63$, $U_3 = 0.60$.

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

• First stage aggregation across dimensions yields

$$U_1 = 0.68$$
, $U_2 = 0.63$, $U_3 = 0.60$.

Second stage aggregation across persons yields

$$W = \frac{1}{3} (0.68 + 0.63 + 0.60) = 0.64$$

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

• First stage aggregation across dimensions yields

$$U_1 = 0.68$$
, $U_2 = 0.63$, $U_3 = 0.60$.

Second stage aggregation across persons yields

$$W = \frac{1}{3} (0.68 + 0.63 + 0.60) = 0.64$$

 \bullet Create $\mathbf{h} = (0.5, 0.5, 0.5)$

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

First stage aggregation across dimensions yields

$$U_1 = 0.68$$
, $U_2 = 0.63$, $U_3 = 0.60$.

Second stage aggregation across persons yields

$$W = \frac{1}{3} (0.68 + 0.63 + 0.60) = 0.64$$

- Create $\mathbf{h} = (0.5, 0.5, 0.5)$
- ullet Then $ar{\it U}=\mu_{-2,a}^{0.5}\left(0.5,0.5,0.5
 ight)=0.71.$ $ar{
 m W}=0.71$

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

• First stage aggregation across dimensions yields

$$U_1 = 0.68$$
, $U_2 = 0.63$, $U_3 = 0.60$.

Second stage aggregation across persons yields

$$W = \frac{1}{3} (0.68 + 0.63 + 0.60) = 0.64$$

- Create $\mathbf{h} = (0.5, 0.5, 0.5)$
- ullet Then $ar{\it U}=\mu^{0.5}_{-2,a}\left(0.5,0.5,0.5
 ight)=0.71.$ $ar{
 m W}=0.71$
- Inequality index

$$I_B = 1 - \frac{0.64}{0.71} = 0.099$$

Bourguignon Index (1999)

• Example:
$$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$
, $\beta = -2$, $\alpha = 0.5$, $a = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• First stage aggregation across dimensions yields

$$U_1 = 0.68$$
, $U_2 = 0.63$, $U_3 = 0.60$.

Second stage aggregation across persons yields

$$W = \frac{1}{3} (0.68 + 0.63 + 0.60) = 0.64$$

- Create $\mathbf{h} = (0.5, 0.5, 0.5)$
- ullet Then $ar{\it U}=\mu_{-2,a}^{0.5}\left(0.5,0.5,0.5
 ight)=0.71.$ $ar{
 m W}=0.71$
- Inequality index

$$I_B = 1 - \frac{0.64}{0.71} = 0.099$$

Problems: role of inequality aversion parameter is not clear

A two stage procedure

- A two stage procedure
- The first stage is a weighted generalized mean

$$U_n = \mu_{\beta,a}\left(x_{n1},...,x_{nD}\right).$$

- A two stage procedure
- The first stage is a weighted generalized mean

$$U_n = \mu_{\beta,a}\left(x_{n1},...,x_{nD}\right)$$
.

• The second stage is a generalized entropy

$$\mathbf{I}_{M} = \left\{ \begin{array}{l} \frac{1}{\alpha(1-\alpha)} \frac{1}{N} \sum_{i=1}^{n} \left(1 - \left(\frac{U_{n}}{\overline{S}}\right)^{\alpha}\right) \text{ for } \alpha \neq 0, 1. \\ \frac{1}{N} \sum_{i=1}^{n} \log \left(\frac{\overline{S}}{U_{n}}\right) \text{ for } \alpha = 0 \\ \frac{1}{N} \sum_{i=1}^{n} \frac{U_{n}}{\overline{S}} \log \left(\frac{U_{n}}{\overline{S}}\right) \text{ for } \alpha = 1 \end{array} \right.$$

- A two stage procedure
- The first stage is a weighted generalized mean

$$U_n = \mu_{\beta,a}\left(x_{n1},...,x_{nD}\right)$$
.

• The second stage is a generalized entropy

$$\mathbf{I}_{M} = \left\{ \begin{array}{l} \frac{1}{\alpha(1-\alpha)} \frac{1}{N} \sum_{i=1}^{n} \left(1 - \left(\frac{U_{n}}{\overline{S}}\right)^{\alpha}\right) \text{ for } \alpha \neq 0, 1. \\ \frac{1}{N} \sum_{i=1}^{n} \log \left(\frac{\overline{S}}{U_{n}}\right) \text{ for } \alpha = 0 \\ \frac{1}{N} \sum_{i=1}^{n} \frac{U_{n}}{\overline{S}} \log \left(\frac{U_{n}}{\overline{S}}\right) \text{ for } \alpha = 1 \end{array} \right.$$

•
$$\bar{S} = \frac{1}{N} \sum_{i=1}^{N} U_n$$

- A two stage procedure
- The first stage is a weighted generalized mean

$$U_n = \mu_{\beta,a}\left(x_{n1},...,x_{nD}\right)$$
.

• The second stage is a generalized entropy

$$\mathbf{I}_{M} = \left\{ \begin{array}{l} \frac{1}{\alpha(1-\alpha)}\frac{1}{N}\sum_{i=1}^{n}\left(1-\left(\frac{U_{n}}{\overline{S}}\right)^{\alpha}\right) \text{ for } \alpha \neq 0,1. \\ \frac{1}{N}\sum_{i=1}^{n}\log\left(\frac{\overline{S}}{U_{n}}\right) \text{ for } \alpha = 0 \\ \frac{1}{N}\sum_{i=1}^{n}\frac{U_{n}}{\overline{S}}\log\left(\frac{U_{n}}{\overline{S}}\right) \text{ for } \alpha = 1 \end{array} \right.$$

- $\bar{S} = \frac{1}{N} \sum_{i=1}^{N} U_n$
- Problems: Not sure what restrictions on parameter satisfies different transfer properties

• Tsui (1995)

$$I_{TRI} = 1 - \left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D} \left(\frac{x_{nd}}{\mu_d} \right)^{a_d} \right]^{1/\sum_{i=1}^{D} a_d}$$

• Tsui (1995)

$$I_{TRI} = 1 - \left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D} \left(\frac{x_{nd}}{\mu_d} \right)^{a_d} \right]^{1/\sum_{i=1}^{D} a_d}$$

Tsui also developed more indices in 1999 based on generalized entropy

• Tsui (1995)

$$I_{TRI} = 1 - \left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D} \left(\frac{x_{nd}}{\mu_d} \right)^{a_d} \right]^{1/\sum_{i=1}^{D} a_d}$$

- Tsui also developed more indices in 1999 based on generalized entropy
- Unlike Maasoumi, these indices had parameter specification to satisfy transfer.

• Tsui (1995)

$$I_{TRI} = 1 - \left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D} \left(\frac{x_{nd}}{\mu_d} \right)^{a_d} \right]^{1/\sum_{i=1}^{D} a_d}$$

- Tsui also developed more indices in 1999 based on generalized entropy
- Unlike Maasoumi, these indices had parameter specification to satisfy transfer.
- Problem: Tsui parameters are not interpretable.

• Gajdos and Weymark Index (2005)

- Gajdos and Weymark Index (2005)
 - First stage: Gini social evaluation function

$$U_d = \sum_{n=1}^{N} \left(\frac{2n-1}{N^2}\right) \tilde{x}_n$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

- Gajdos and Weymark Index (2005)
 - First stage: Gini social evaluation function

$$U_d = \sum_{n=1}^{N} \left(\frac{2n-1}{N^2}\right) \tilde{x}_n$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

• Second stage: generalized mean across dimensions.

$$\mathsf{I}_{\mathit{GW}} = \mu_{eta}\left(\mathit{U}_{1},...,\mathit{U}_{D}
ight)$$
 for $eta \leq 1$

- Gajdos and Weymark Index (2005)
 - First stage: Gini social evaluation function

$$U_d = \sum_{n=1}^{N} \left(\frac{2n-1}{N^2}\right) \tilde{x}_n$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

• Second stage: generalized mean across dimensions.

$$\mathsf{I}_{\mathit{GW}} = \mu_{eta}\left(\mathit{U}_{1},...,\mathit{U}_{D}
ight)$$
 for $eta \leq 1$

• Limitation: the order of aggregation

- Gajdos and Weymark Index (2005)
 - First stage: Gini social evaluation function

$$U_d = \sum_{n=1}^{N} \left(\frac{2n-1}{N^2} \right) \tilde{x}_n$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

• Second stage: generalized mean across dimensions.

$$\mathsf{I}_{\mathit{GW}} = \mu_{eta}\left(\mathit{U}_{1},...,\mathit{U}_{D}
ight)$$
 for $eta \leq 1$

- Limitation: the order of aggregation
- I_{GW} is not sensitive to correlation among dimensions

• Decancq and Lugo (2008)

- Decancq and Lugo (2008)
- Reversed order of aggregation

- Decancq and Lugo (2008)
- Reversed order of aggregation
 - First stage: generalized mean across dimensions.

$$U_n = \mu_{\beta}(x_{n*}) \text{ for } \beta \leq 1$$

- Decancq and Lugo (2008)
- Reversed order of aggregation
 - First stage: generalized mean across dimensions.

$$U_n = \mu_{\beta}(x_{n*}) \text{ for } \beta \leq 1$$

Second stage: Gini social evaluation function

$$I_{DL} = \sum_{n=1}^{N} \left(\frac{2n-1}{N^2} \right) \tilde{U}_n$$

where \tilde{U}_n is obtained by arranging $\{U_n\}_{n=1}^N$ in a descending order.

Summary

Sequence of aggregation matters

Summary

- Sequence of aggregation matters
- Association sensitivity requires aggregation across dimenisons first and then across persons