Multidimensional Well-Being and Inequality Indices

Suman Seth
Vanderbilt University \& OPHI

$2^{\text {nd }}$ September, 2008

Measuring Well-Being

- How to measure?

Measuring Well-Being

- How to measure?
- Income?

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education
- Health status

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education
- Health status
- Single dimension vs Multiple dimensions

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education
- Health status
- Single dimension vs Multiple dimensions
- Capability approach

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education
- Health status
- Single dimension vs Multiple dimensions
- Capability approach
- Example

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education
- Health status
- Single dimension vs Multiple dimensions
- Capability approach
- Example
- The physical quality of life index (Morris, 1979)

Measuring Well-Being

- How to measure?
- Income?
- Various other components (dimensions) of well-being
- Level of education
- Health status
- Single dimension vs Multiple dimensions
- Capability approach
- Example
- The physical quality of life index (Morris, 1979)
- The human development index (UNDP)

Outline

- Introduction

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals
- Multidimensional Inequality Measures

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals
- Multidimensional Inequality Measures
- Axioms of MD inequality measurement

Outline

- Introduction
- Basic framework of the Human Development Index (HDI)
- HDI as a measure of Multidimensional (MD) well-being
- Axioms of MD well-being measurement
- Limitations of the HDI and different constructive proposals
- Multidimensional Inequality Measures
- Axioms of MD inequality measurement
- Multidimensional indices

HDI: Basic Framework

- A composite index consisting of three indices:

HDI: Basic Framework

- A composite index consisting of three indices:
- Gross Domestic Product (GDP) Index

HDI: Basic Framework

- A composite index consisting of three indices:
- Gross Domestic Product (GDP) Index
- Life expectancy (LE) Index

HDI: Basic Framework

- A composite index consisting of three indices:
- Gross Domestic Product (GDP) Index
- Life expectancy (LE) Index
- Education (E) Index

HDI: Basic Framework

- A composite index consisting of three indices:
- Gross Domestic Product (GDP) Index
- Life expectancy (LE) Index
- Education (E) Index
- All indices are normalized between zero and one

HDI: Basic Framework

- A composite index consisting of three indices:
- Gross Domestic Product (GDP) Index
- Life expectancy (LE) Index
- Education (E) Index
- All indices are normalized between zero and one
- GDP Index

$$
=\frac{\log (\text { PCGDP })-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}
$$

HDI: Basic Framework

- A composite index consisting of three indices:
- Gross Domestic Product (GDP) Index
- Life expectancy (LE) Index
- Education (E) Index
- All indices are normalized between zero and one
- GDP Index

$$
=\frac{\log (\text { PCGDP })-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}
$$

- Life Expectancy Index

$$
=\frac{L E-25}{85-25}
$$

HDI: Basic Framework

- Education Index

HDI: Basic Framework

- Education Index
- Consists of two sub-indices

HDI: Basic Framework

- Education Index
- Consists of two sub-indices
- Adult literacy (AL) index

HDI: Basic Framework

- Education Index
- Consists of two sub-indices
- Adult literacy (AL) index
- Gross school enrolment (GSE) index

HDI: Basic Framework

- Education Index
- Consists of two sub-indices
- Adult literacy (AL) index
- Gross school enrolment (GSE) index
- Adult literacy index

$$
=\frac{A L-0}{100-0}
$$

HDI: Basic Framework

- Education Index
- Consists of two sub-indices
- Adult literacy (AL) index
- Gross school enrolment (GSE) index
- Adult literacy index

$$
=\frac{A L-0}{100-0}
$$

- Gross school enrolment index

$$
=\frac{\mathrm{GSE}-0}{100-0}
$$

HDI: Basic Framework

- Education Index
- Consists of two sub-indices
- Adult literacy (AL) index
- Gross school enrolment (GSE) index
- Adult literacy index

$$
=\frac{\mathrm{AL}-0}{100-0}
$$

- Gross school enrolment index

$$
=\frac{\mathrm{GSE}-0}{100-0}
$$

- Education Index $=\frac{2}{3} \times$ Adult literacy index $+\frac{1}{3} \times$ Gross school enrolment index

HDI: Basic Framework

- Education Index
- Consists of two sub-indices
- Adult literacy (AL) index
- Gross school enrolment (GSE) index
- Adult literacy index

$$
=\frac{\mathrm{AL}-0}{100-0}
$$

- Gross school enrolment index

$$
=\frac{\mathrm{GSE}-0}{100-0}
$$

- Education Index $=\frac{2}{3} \times$ Adult literacy index $+\frac{1}{3} \times$ Gross school enrolment index
- $\mathrm{HDI}=\frac{1}{3} \times$ GDP Index $+\frac{1}{3} \times$ Life \exp Index $+\frac{1}{3} \times$ Education Index

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$
- Per Capita gross domestic product (PGDP) index $=$

$$
\frac{\log (\$ 3,139)-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}=0.58
$$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$
- Per Capita gross domestic product (PGDP) index $=$

$$
\frac{\log (\$ 3,139)-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}=0.58
$$

- Life expectancy $=(63.6-25) /(85-25)=0.64$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$
- Per Capita gross domestic product (PGDP) index $=$

$$
\frac{\log (\$ 3,139)-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}=0.58
$$

- Life expectancy $=(63.6-25) /(85-25)=0.64$
- Adult literacy index $=(61-0) /(100-0)=0.61$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$
- Per Capita gross domestic product (PGDP) index $=$

$$
\frac{\log (\$ 3,139)-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}=0.58
$$

- Life expectancy $=(63.6-25) /(85-25)=0.64$
- Adult literacy index $=(61-0) /(100-0)=0.61$
- Gross school enrolment index $=(62-0) /(100-0)=0.62$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$
- Per Capita gross domestic product (PGDP) index $=$

$$
\frac{\log (\$ 3,139)-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}=0.58
$$

- Life expectancy $=(63.6-25) /(85-25)=0.64$
- Adult literacy index $=(61-0) /(100-0)=0.61$
- Gross school enrolment index $=(62-0) /(100-0)=0.62$
- Education index $=\frac{2}{3} \times 0.61+\frac{1}{3} \times 0.62=0.61$

Example India

- Per Capita Gross Domestic Product $=\$ 3,139$
- Life expectancy $=63.6$ years
- Adult literacy $=61 \%$
- Gross school enrolment $=62 \%$
- Per Capita gross domestic product (PGDP) index $=$

$$
\frac{\log (\$ 3,139)-\log (\$ 100)}{\log (\$ 40,000)-\log (\$ 100)}=0.58
$$

- Life expectancy $=(63.6-25) /(85-25)=0.64$
- Adult literacy index $=(61-0) /(100-0)=0.61$
- Gross school enrolment index $=(62-0) /(100-0)=0.62$
- Education index $=\frac{2}{3} \times 0.61+\frac{1}{3} \times 0.62=0.61$
- $\mathrm{HDI}=\frac{1}{3} \times 0.58+\frac{1}{3} \times 0.64+\frac{1}{3} \times 0.61=0.61$

2004 HDI Table: Top Ten Countries

Rank	Country	HDI	LE Index	Edu Index	GDP Index
1	Norway	0.965	0.909	0.993	0.993
2	Iceland	0.960	0.931	0.981	0.968
3	Australia	0.957	0.925	0.993	0.954
4	Ireland	0.956	0.882	0.990	0.995
5	Sweden	0.951	0.922	0.982	0.949
6	Canada	0.950	0.919	0.970	0.959
7	Japan	0.949	0.953	0.945	0.948
8	United States	0.948	0.875	0.971	0.999
9	Switzerland	0.947	0.928	0.946	0.968
10	Netherlands	0.947	0.892	0.987	0.962

HDI: An Ultimate Index?

- Criticism: HDI is not sensitive to inequality across persons

HDI: An Ultimate Index?

- Criticism: HDI is not sensitive to inequality across persons
- Two proposals

HDI: An Ultimate Index?

- Criticism: HDI is not sensitive to inequality across persons
- Two proposals
- Hicks (1997)

HDI: An Ultimate Index?

- Criticism: HDI is not sensitive to inequality across persons
- Two proposals
- Hicks (1997)
- Foster, López-Calva, Székely (2005)

Hicks (1997): Inequality Adjusted HDI (IAHDI)

Table 5. Country rankings by HDI and IAHDI

Country	HDI	IAHDI	Change in ranks
Hong Kong	1	1	0
Costa Rica	2	3	-1
Korea (Rep.)	3	2	1
Chile	4	1	0
Venezuela	5	7	-2
Panama	6	8	-2
Mexico	7	10	-3
Colombia	8	9	-1
Thailand	9	5	4
Malaysia	10	6	4
Brazil	11	12	-1
Peru	12	14	-2
Dom. Rep.	13	15	-2
Sri Lanka	14	11	3
Philippines	15	13	2
Nicaragua	16	16	0
Guatemala	17	19	-2
Honduras	18	17	1
Zimbabwe	19	18	1
Bangladesh	20	20	0

Foster et. al. (2005): Generalized Mean HDI (HDI-GM)

Table 1. HDI-Generalized Mean correcting for within-inequality by State, 2000

	$\varepsilon=0$			$\varepsilon=3$		
	HDI-GM	Ranking		HDI-GM	Ranking	Rank change
Aguascalientes	0.7001	5		0.5811	3	2
Baja California	0.7176	2		0.6150	2	0
Baja California Sur	0.7038	3		0.5787	4	-1
Campeche	0.6734	15		0.5473	7	8
Chiapas	0.5735	32		0.3797	31	1
Chihuahua	0.6739	14		0.5069	18	-4
Coahuila	0.6957	6		0.5637	6	0
Colima	0.6884	7		0.5428	10	-3
Distrito Federal	0.7403	1		0.6376	1	0
Durango	0.6608	20		0.4708	23	-3
Estado de México	0.6824	9		0.5185	14	-5
Guanajuato	0.6546	22		0.4937	19	3
Guerrero	0.5968	30		0.3995	30	0
Hidalgo	0.6449	24		0.4784	21	0
Jalisco	0.6772	12		0.5246	13	-1
Michoacán	0.6363	26		0.4509	26	0
Morelos	0.6691	16		0.5139	16	0
Nayarit	0.6638	18		0.4898	20	-2
Nuevo León	0.7021	4		0.5783	5	-1

Foster et. al. (2005): Generalized Mean HDI (HDI-GM)

- Does not aggregate across individuals and then normalize like HDI

Foster et. al. (2005): Generalized Mean HDI (HDI-GM)

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates

Foster et. al. (2005): Generalized Mean HDI (HDI-GM)

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates
- Income varies across individuals

Foster et. al. (2005): Generalized Mean HDI (HDI-GM)

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates
- Income varies across individuals
- Enrolment rates and literacy rates varies across households

Foster et. al. (2005): Generalized Mean HDI (HDI-GM)

- Does not aggregate across individuals and then normalize like HDI
- First Normalizes and then aggregates
- Income varies across individuals
- Enrolment rates and literacy rates varies across households
- Infant survival rate (health variable) varies across municipalities

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions
- Normalized achievement vector: $\mathrm{X}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions
- Normalized achievement vector: $\mathrm{X}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$
- $x_{n d}$ is the achievement of the $n^{\text {th }}$ person in the $d^{\text {th }}$ dimension

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions
- Normalized achievement vector: $\mathrm{X}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$
- $x_{n d}$ is the achievement of the $n^{\text {th }}$ person in the $d^{\text {th }}$ dimension
- $x_{n d}>0 \forall n, d$

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions
- Normalized achievement vector: $\mathrm{X}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$
- $x_{n d}$ is the achievement of the $n^{\text {th }}$ person in the $d^{\text {th }}$ dimension
- $x_{n d}>0 \forall n, d$
- Denote: $x_{n *}=\left(x_{n 1}, \ldots, x_{n D}\right) \forall n$ and $x_{* d}=\left(x_{1 d}, \ldots, x_{N d}\right) \forall d$

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions
- Normalized achievement vector: $\mathrm{X}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$
- $x_{n d}$ is the achievement of the $n^{\text {th }}$ person in the $d^{\text {th }}$ dimension
- $x_{n d}>0 \forall n, d$
- Denote: $x_{n *}=\left(x_{n 1}, \ldots, x_{n D}\right) \forall n$ and $x_{* d}=\left(x_{1 d}, \ldots, x_{N d}\right) \forall d$
- $x_{n *}$ is the achievement vector of the $n^{\text {th }}$ person

HDI as a Well-Being Index: Basic Framework

- N persons and D dimensions
- Normalized achievement vector: $\mathrm{X}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$
- $x_{n d}$ is the achievement of the $n^{\text {th }}$ person in the $d^{\text {th }}$ dimension
- $x_{n d}>0 \forall n, d$
- Denote: $x_{n *}=\left(x_{n 1}, \ldots, x_{n D}\right) \forall n$ and $x_{* d}=\left(x_{1 d}, \ldots, x_{N d}\right) \forall d$
- $x_{n *}$ is the achievement vector of the $n^{\text {th }}$ person
- $x_{* d}$ is the achievement vector of the $d^{\text {th }}$ dimension

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is

$$
\begin{aligned}
\mu_{\gamma}(\mathbf{h}) & =\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma} \text { for } \gamma \neq 0 \text { and } \\
\mu_{\gamma}(\mathbf{h}) & =\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \text { for } \gamma=0
\end{aligned}
$$

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is
- $\mu_{\gamma}(\mathbf{h})=\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma}$ for $\gamma \neq 0$ and
$\mu_{\gamma}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M}$ for $\gamma=0$
- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is
- $\mu_{\gamma}(\mathbf{h})=\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma}$ for $\gamma \neq 0$ and
$\mu_{\gamma}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M}$ for $\gamma=0$
- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean
- If $\gamma=0$, then $\mu_{0}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \rightarrow$ Geometric Mean

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is
- $\mu_{\gamma}(\mathbf{h})=\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma}$ for $\gamma \neq 0$ and
$\mu_{\gamma}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M}$ for $\gamma=0$
- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean
- If $\gamma=0$, then $\mu_{0}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \rightarrow$ Geometric Mean
- If $\gamma=-1$, then $\mu_{-1}(\mathbf{h})=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}} \rightarrow$ Harmonic Mean

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is

$$
\begin{aligned}
\mu_{\gamma}(\mathbf{h}) & =\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma} \text { for } \gamma \neq 0 \text { and } \\
\mu_{\gamma}(\mathbf{h}) & =\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \text { for } \gamma=0
\end{aligned}
$$

- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean
- If $\gamma=0$, then $\mu_{0}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \rightarrow$ Geometric Mean
- If $\gamma=-1$, then $\mu_{-1}(\mathbf{h})=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}} \rightarrow$ Harmonic Mean
- As γ falls, more emphasis is given on lower values

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is
- $\mu_{\gamma}(\mathbf{h})=\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma}$ for $\gamma \neq 0$ and
$\mu_{\gamma}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M}$ for $\gamma=0$
- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean
- If $\gamma=0$, then $\mu_{0}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \rightarrow$ Geometric Mean
- If $\gamma=-1$, then $\mu_{-1}(\mathbf{h})=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}} \rightarrow$ Harmonic Mean
- As γ falls, more emphasis is given on lower values
- If $\gamma=-\infty$, then $\mu_{-\infty}(\mathbf{h})=\min \left(h_{1}, \ldots, h_{M}\right)$

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is
- $\begin{aligned} \mu_{\gamma}(\mathbf{h}) & =\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma} \text { for } \gamma \neq 0 \text { and } \\ \mu_{\gamma}(\mathbf{h}) & =\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \text { for } \gamma=0\end{aligned}$
- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean
- If $\gamma=0$, then $\mu_{0}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \rightarrow$ Geometric Mean
- If $\gamma=-1$, then $\mu_{-1}(\mathbf{h})=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}} \rightarrow$ Harmonic Mean
- As γ falls, more emphasis is given on lower values
- If $\gamma=-\infty$, then $\mu_{-\infty}(\mathbf{h})=\min \left(h_{1}, \ldots, h_{M}\right)$
- As γ rises, more emphasis is given on higher values

Generalized Mean

- For a vector $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right)$, Generalized mean of order γ is
- $\mu_{\gamma}(\mathbf{h})=\left[\frac{1}{M}\left(h_{1}^{\gamma}+\ldots+h_{M}^{\gamma}\right)\right]^{1 / \gamma}$ for $\gamma \neq 0$ and
$\mu_{\gamma}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M}$ for $\gamma=0$
- If $\gamma=1$, then $\mu_{1}(\mathbf{h})=\frac{h_{1}+\ldots+h_{M}}{M} \rightarrow$ Arithmetic Mean
- If $\gamma=0$, then $\mu_{0}(\mathbf{h})=\left(h_{1} \times \ldots \times h_{M}\right)^{1 / M} \rightarrow$ Geometric Mean
- If $\gamma=-1$, then $\mu_{-1}(\mathbf{h})=\frac{M}{h_{1}^{-1}+\ldots+h_{M}^{-1}} \rightarrow$ Harmonic Mean
- As γ falls, more emphasis is given on lower values
- If $\gamma=-\infty$, then $\mu_{-\infty}(\mathbf{h})=\min \left(h_{1}, \ldots, h_{M}\right)$
- As γ rises, more emphasis is given on higher values
- If $\gamma=\infty$, then $\mu_{\infty}(\mathbf{h})=\max \left(h_{1}, \ldots, h_{M}\right)$

Basic Axioms Satisfied by Well-Being Indices

- Normalization (NM). If $x_{n d}=\delta$ for all n, d, then $\mathrm{W}(\mathrm{X})=\delta$

Basic Axioms Satisfied by Well-Being Indices

- Normalization (NM). If $x_{n d}=\delta$ for all n, d, then $\mathrm{W}(\mathrm{X})=\delta$
- Symmetry in Persons (SP). Personal identity does not matter

Basic Axioms Satisfied by Well-Being Indices

- Normalization (NM). If $x_{n d}=\delta$ for all n, d, then $\mathrm{W}(\mathrm{X})=\delta$
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). $\mathrm{W}(\mathrm{X})$ is non-decreasing in $x_{n d}$ for all n, d.

Basic Axioms Satisfied by Well-Being Indices

- Normalization (NM). If $x_{n d}=\delta$ for all n, d, then $\mathrm{W}(\mathrm{X})=\delta$
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). $\mathrm{W}(\mathrm{X})$ is non-decreasing in $x_{n d}$ for all n, d.
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall well-being.

Basic Axioms Satisfied by Well-Being Indices

- Normalization (NM). If $x_{n d}=\delta$ for all n, d, then $\mathrm{W}(\mathrm{X})=\delta$
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). $\mathrm{W}(\mathrm{X})$ is non-decreasing in $x_{n d}$ for all n, d.
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall well-being.
- Subgroup Consistency (SC). If the well-being of one subgroup rises and the other is unaltered, then overall well-being rise

Basic Axioms Satisfied by Well-Being Indices

- Normalization (NM). If $x_{n d}=\delta$ for all n, d, then $\mathrm{W}(\mathrm{X})=\delta$
- Symmetry in Persons (SP). Personal identity does not matter
- Monotonicity (M). $\mathrm{W}(\mathrm{X})$ is non-decreasing in $x_{n d}$ for all n, d.
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall well-being.
- Subgroup Consistency (SC). If the well-being of one subgroup rises and the other is unaltered, then overall well-being rise
- Continuity (CN). W(H) does not change abruptly due to a change in any of the elements in H

HDI: A Simple Additive Approach (WA)

- The simple average of the whole matrix H

HDI: A Simple Additive Approach (W_{A})

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions

HDI: A Simple Additive Approach (W_{A})

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions
(2) First stage: simple average across dimensions. Second stage: simple average across persons

HDI: A Simple Additive Approach (WA)

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions
(2) First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions

HDI: A Simple Additive Approach (WA)

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions
(2) First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions
- $\mathrm{H}=\left[\begin{array}{cccc} & \text { Income } & \text { Education } & \text { Health } \\ \text { Person 1 } & 0.8 & 0.8 & 0.3 \\ \text { Person 2 } & 0.4 & 0.3 & 0.8 \\ \text { Person 3 } & 0.3 & 0.4 & 0.4\end{array}\right]$

HDI: A Simple Additive Approach (WA)

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions
(2) First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions
- $\mathbf{H}=\left[\begin{array}{cccc} & \text { Income } & \text { Education } & \text { Health } \\ \text { Person 1 } & 0.8 & 0.8 & 0.3 \\ \text { Person 2 } & 0.4 & 0.3 & 0.8 \\ \text { Person 3 } & 0.3 & 0.4 & 0.4\end{array}\right]$
(1) First stage: average across persons yields ($0.5,0.5,0.5$). Second stage: average across dimensions yields 0.5 . Thus, $\mathrm{W}_{A}=0.5$

HDI: A Simple Additive Approach (WA)

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions
(2) First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions
- $\mathbf{H}=\left[\begin{array}{cccc} & \text { Income } & \text { Education } & \text { Health } \\ \text { Person 1 } & 0.8 & 0.8 & 0.3 \\ \text { Person 2 } & 0.4 & 0.3 & 0.8 \\ \text { Person 3 } & 0.3 & 0.4 & 0.4\end{array}\right]$
(1) First stage: average across persons yields $(0.5,0.5,0.5)$. Second stage: average across dimensions yields 0.5 . Thus, $\mathrm{W}_{A}=0.5$
(2) First stage: average across dimensions yields ($0.63,0.5,0.37$). Second stage: average across persons yields 0.5 . Thus, $\mathrm{W}_{A}=0.5$

HDI: A Simple Additive Approach (WA)

- The simple average of the whole matrix H
(1) First stage: simple average across persons. Second stage: simple average across dimensions
(2) First stage: simple average across dimensions. Second stage: simple average across persons
- Example: 3 persons and 3 dimensions
- $\mathrm{H}=\left[\begin{array}{cccc} & \text { Income } & \text { Education } & \text { Health } \\ \text { Person 1 } & 0.8 & 0.8 & 0.3 \\ \text { Person 2 } & 0.4 & 0.3 & 0.8 \\ \text { Person 3 } & 0.3 & 0.4 & 0.4\end{array}\right]$
(1) First stage: average across persons yields ($0.5,0.5,0.5$). Second stage: average across dimensions yields 0.5 . Thus, $\mathrm{W}_{A}=0.5$
(2) First stage: average across dimensions yields ($0.63,0.5,0.37$). Second stage: average across persons yields 0.5 . Thus, $\mathrm{W}_{A}=0.5$
- Both sequences of aggregation yield the same result. Path Independence (PI) - sequence of aggregation is not important (Foster, López-Calva, Székely (2005)

Policy Exercise

- Given achievement matrix

Policy Exercise

- Given achievement matrix
- $X=$| | Income | Education | Health |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

Policy Exercise

- Given achievement matrix
- $\mathrm{X}=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Policy maker's budget - one indivisible dollar (\$1)

Policy Exercise

- Given achievement matrix
- $\mathrm{X}=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units

Policy Exercise

- Given achievement matrix
- $\mathrm{X}=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_{A}

Policy Exercise

- Given achievement matrix

$\bullet X=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_{A}
- Question: Where should the dollar be spent?

Policy Exercise

- Given achievement matrix

$\bullet X=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_{A}
- Question: Where should the dollar be spent?
- Answer: Anywhere in the matrix. Insensitive to inequality

Policy Exercise

- Given achievement matrix

$\bullet X=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_{A}
- Question: Where should the dollar be spent?
- Answer: Anywhere in the matrix. Insensitive to inequality
- Evaluation of W_{A}

Policy Exercise

- Given achievement matrix

$\bullet X=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_{A}
- Question: Where should the dollar be spent?
- Answer: Anywhere in the matrix. Insensitive to inequality
- Evaluation of W_{A}
- W_{A} satisfies NM, SP, M, PRI, SC, CN, PI

Policy Exercise

- Given achievement matrix

$\bullet X=$| | Income | Education | Health |
| :--- | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Policy maker's budget - one indivisible dollar (\$1)
- Suppose the dollar increases achievement in any dimension by 0.1 units
- Let well-being be calculated by applying W_{A}
- Question: Where should the dollar be spent?
- Answer: Anywhere in the matrix. Insensitive to inequality
- Evaluation of W_{A}
- W_{A} satisfies NM, SP, M, PRI, SC, CN, PI
- W_{A} is not sensitive to inequality across persons

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): W(BX) > W (X)

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): W(BX) > W(X)
- B is a bistochastic matrix

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): $\mathrm{W}(B X)>W(X)$
- B is a bistochastic matrix
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \bar{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): W(BX) > W(X)
- B is a bistochastic matrix
- Example: $X=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \bar{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- If \bar{X} is obtained from X, then $W(\bar{X})>W(X)$

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): W(BX) > W (X)
- B is a bistochastic matrix
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \bar{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- If \bar{X} is obtained from X, then $W(\bar{X})>W(X)$
- Would we get different results if W_{A} is applied?

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): W(BX) > W (X)
- B is a bistochastic matrix
- Example: $X=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \bar{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- If \bar{X} is obtained from X, then $W(\bar{X})>W(X)$
- Would we get different results if W_{A} is applied?
- $\mathrm{W}_{\mathrm{A}}(\mathrm{X})=0.5$

Two Forms of Multidimensional Inequality

- The first: distribution sensitive inequality (Kolm 1977)
- Decrease in the spread of the distribution increases well-being
- Uniform Majorization (UM): W(BX) > W (X)
- B is a bistochastic matrix
- Example: $X=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \bar{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- If \bar{X} is obtained from X, then $W(\bar{X})>W(X)$
- Would we get different results if W_{A} is applied?
- $\mathrm{W}_{A}(\mathrm{X})=0.5$
- $\mathrm{W}_{A}(\overline{\mathrm{X}})=0.5$

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
- Hicks (1997) Index $\left(W_{H}\right)$

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
- Hicks (1997) Index $\left(W_{H}\right)$
- First stage: aggregates across persons by using Sen welfare standard $S(\cdot)=\mu_{1}(\cdot)[1-G(\cdot)]$. Second stage: uses simple average across dimensions $\mu_{1}(\cdot)$

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
- Hicks (1997) Index $\left(W_{H}\right)$
- First stage: aggregates across persons by using Sen welfare standard $S(\cdot)=\mu_{1}(\cdot)[1-G(\cdot)]$. Second stage: uses simple average across dimensions $\mu_{1}(\cdot)$
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
- Hicks (1997) Index $\left(W_{H}\right)$
- First stage: aggregates across persons by using Sen welfare standard $S(\cdot)=\mu_{1}(\cdot)[1-G(\cdot)]$. Second stage: uses simple average across dimensions $\mu_{1}(\cdot)$
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is ($0.22,0.22,0.22$). The first stage achievement vector is ($0.39,0.39,0.39$).

Indices Sensitive to Inequality Across Persons

- Indices sensitive to the first form of inequality across persons
- Hicks (1997) Index $\left(W_{H}\right)$
- First stage: aggregates across persons by using Sen welfare standard $S(\cdot)=\mu_{1}(\cdot)[1-G(\cdot)]$. Second stage: uses simple average across dimensions $\mu_{1}(\cdot)$
- Example: $\mathrm{X}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is ($0.22,0.22,0.22$). The first stage achievement vector is ($0.39,0.39,0.39$).
- The second stage average yields $-\mu_{1}(0.39,0.39,0.39)=0.39$.

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6\end{array}\right]$

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is $(0.2,0.2,0.13)$. The first stage achievement vector is ($0.4,0.4,0.42$).

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is $(0.2,0.2,0.13)$. The first stage achievement vector is ($0.4,0.4,0.42$).

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is $(0.2,0.2,0.13)$. The first stage achievement vector is ($0.4,0.4,0.42$).
- The second stage average yields $-\mu_{1}(0.4,0.4,0.42)=0.41$.

Indices Sensitive to Inequality Across Persons

- Example: $\bar{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is $(0.2,0.2,0.13)$. The first stage achievement vector is (0.4, 0.4, 0.42).
- The second stage average yields $-\mu_{1}(0.4,0.4,0.42)=0.41$.
- Thus, $\mathrm{W}_{H}(\mathrm{X})=0.39$ and $\mathrm{W}_{H}(\overline{\mathrm{X}})=0.41$

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is $(0.2,0.2,0.13)$. The first stage achievement vector is (0.4, 0.4, 0.42).
- The second stage average yields $-\mu_{1}(0.4,0.4,0.42)=0.41$.
- Thus, $\mathrm{W}_{H}(\mathrm{X})=0.39$ and $\mathrm{W}_{H}(\overline{\mathrm{X}})=0.41$
- Gini Index - not subgroup consistent

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- The first stage average across persons yields ($0.5,0.5,0.5$). The Gini vector is $(0.2,0.2,0.13)$. The first stage achievement vector is (0.4, 0.4, 0.42).
- The second stage average yields $-\mu_{1}(0.4,0.4,0.42)=0.41$.
- Thus, $\mathrm{W}_{H}(\mathrm{X})=0.39$ and $\mathrm{W}_{H}(\overline{\mathrm{X}})=0.41$
- Gini Index - not subgroup consistent
- Hicks Index satisfies NM, SP, M, PRI, CN, SICS but not SC, PI

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index $\left(W_{F}\right)$

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.4,0.4,0.4$).

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.4,0.4,0.4$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.4$.

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index $\left(W_{F}\right)$
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)
- Example: $\mathrm{X}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.4,0.4,0.4$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.4$.
- Reversed order of aggregation

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)
- Example: $X=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.4,0.4,0.4$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.4$.
- Reversed order of aggregation
- The first stage yields - $(0.46,0.4,0.36)$ and the second stage yields $\mathrm{W}_{F}=0.4$.

Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_{F})
- First stage: aggregates across persons using $\mu_{\alpha}(\cdot)$. Second stage: aggregates across dimensions using $\mu_{\alpha}(\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \rightarrow the W_{F} satisfies path independence (PI)
- Example: $X=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.4,0.4,0.4$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.4$.
- Reversed order of aggregation
- The first stage yields - $(0.46,0.4,0.36)$ and the second stage yields $W_{F}=0.4$.
- The order of aggregation does not matter.

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.41,0.41,0.42$).

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.41,0.41,0.42$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.41$.

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.41,0.41,0.42$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.41$.
- Thus, $W_{F}(X)=0.40$ and $W_{F}(\bar{X})=0.41$

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.41,0.41,0.42$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.41$.
- Thus, $W_{F}(X)=0.40$ and $W_{F}(\bar{X})=0.41$
- Foster et. al. index satisfies NM, LH, SP, M, PRI, CN, SC, PI, and UM

Indices Sensitive to Inequality Across Persons

- Example: $\overline{\mathrm{X}}=\left[\begin{array}{ccc}0.8 & 0.8 & 0.3 \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6} \\ \mathbf{0 . 3 5} & \mathbf{0 . 3 5} & \mathbf{0 . 6}\end{array}\right]$
- First Stage: Generalized mean across persons yields ($0.41,0.41,0.42$).
- The second stage generalized mean or order -2 yields -$\mu_{-2}(0.4,0.4,0.4)=0.41$.
- Thus, $W_{F}(X)=0.40$ and $W_{F}(\bar{X})=0.41$
- Foster et. al. index satisfies NM, LH, SP, M, PRI, CN, SC, PI, and UM
- Therefore, both W_{H} and W_{F} are sensitive to inequality across persons

Policy Exercise

- Reconsider the achievement matrix

Policy Exercise

- Reconsider the achievement matrix
- $\mathrm{X}=$| | Person 1 | 0.8 | Dim 2 |
| :---: | :---: | :---: | :---: |
| | Dim 3 | | |
| Person 2 | 0.4 | 0.3 | 0.3 |
| Person 3 | 0.3 | 0.4 | 0.4 |

Policy Exercise

- Reconsider the achievement matrix
- $\mathrm{X}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Let well-being be calculated by applying W_{H} or W_{F}

Policy Exercise

- Reconsider the achievement matrix
- $\mathrm{X}=$| | $\operatorname{Dim} 1$ | $\operatorname{Dim} 2$ | $\operatorname{Dim} 3$ |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Let well-being be calculated by applying W_{H} or W_{F}
- Question: Where should the dollar be spent?

Policy Exercise

- Reconsider the achievement matrix
- $\mathrm{X}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Let well-being be calculated by applying W_{H} or W_{F}
- Question: Where should the dollar be spent?
- Using W_{H} : Answer: Either on $\operatorname{dim} 1$ of individual 3, or on $\operatorname{dim} 2$ of individual 2 , or on dim 3 of individual 1

Policy Exercise

- Reconsider the achievement matrix
- $\mathrm{X}=$| | $\operatorname{Dim} 1$ | $\operatorname{Dim} 2$ | $\operatorname{Dim} 3$ |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |
- Let well-being be calculated by applying W_{H} or W_{F}
- Question: Where should the dollar be spent?
- Using W_{H} : Answer: Either on $\operatorname{dim} 1$ of individual 3, or on $\operatorname{dim} 2$ of individual 2, or on dim 3 of individual 1
- Using W_{F} : Answer: Either on dim 1 of individual 3, or on $\operatorname{dim} 2$ of individual 2, or on dim 3 of individual 1

Policy Exercise

$H=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?

Policy Exercise

$\mathrm{H}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$

Policy Exercise

$\mathrm{H}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$

Policy Exercise

$\mathrm{H}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$
- Spend the dollar on dim 1 of person 3

Policy Exercise

$\mathrm{H}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$
- Spend the dollar on dim 1 of person 3
- Achievement vector: $(0.63,0.5,0.4)$

Policy Exercise

$H=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$
- Spend the dollar on dim 1 of person 3
- Achievement vector: $(0.63,0.5,0.4)$
- Spend the dollar on $\operatorname{dim} 2$ of person 2

Policy Exercise

$H=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$
- Spend the dollar on dim 1 of person 3
- Achievement vector: $(0.63,0.5,0.4)$
- Spend the dollar on dim 2 of person 2
- Achievement vector: $(0.63,0.53,0.37)$

Policy Exercise

$H=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$
- Spend the dollar on dim 1 of person 3
- Achievement vector: $(0.63,0.5,0.4)$
- Spend the dollar on dim 2 of person 2
- Achievement vector: $(0.63,0.53,0.37)$
- Spend the dollar on dim 2 of person 2

Policy Exercise

$H=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent from an ethical point of view?
- Suppose, capability of the $n^{\text {th }}$ individual $=\left(x_{n 1}+x_{n 2}+x_{n 3}\right) / 3$
- Achievement vector across individuals: $(0.63,0.5,0.37)$
- Spend the dollar on dim 1 of person 3
- Achievement vector: $(0.63,0.5,0.4)$
- Spend the dollar on dim 2 of person 2
- Achievement vector: $(0.63,0.53,0.37)$
- Spend the dollar on dim 2 of person 2
- Achievement vector: $(0.67,0.5,0.37)$

Association Sensitivity

- These indices can also not differentiate the following two allocations

Association Sensitivity

- These indices can also not differentiate the following two allocations

$$
-H=\left[\begin{array}{lll}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4
\end{array}\right], H^{\prime}=\left[\begin{array}{lll}
0.8 & 0.8 & 0.3 \\
0.4 & \mathbf{0 . 4} & 0.8 \\
0.3 & \mathbf{0 . 3} & 0.4
\end{array}\right]
$$

Association Sensitivity

- These indices can also not differentiate the following two allocations
- $\mathrm{H}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \mathrm{H}^{\prime}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0 . 4} & 0.8 \\ 0.3 & \mathbf{0 . 3} & 0.4\end{array}\right]$
- H^{\prime} is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))

Association Sensitivity

- These indices can also not differentiate the following two allocations
- $\mathbf{H}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], H^{\prime}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.4 & 0.8 \\ 0.3 & \mathbf{0 . 3} & 0.4\end{array}\right]$
- H^{\prime} is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons - association sensitivity

Association Sensitivity

- These indices can also not differentiate the following two allocations
- $\mathbf{H}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], H^{\prime}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0 . 4} & 0.8 \\ 0.3 & \mathbf{0 . 3} & 0.4\end{array}\right]$
- H^{\prime} is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons - association sensitivity
- Association Sensitivity

Association Sensitivity

- These indices can also not differentiate the following two allocations
- $\mathbf{H}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], H^{\prime}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0 . 4} & 0.8 \\ 0.3 & \mathbf{0 . 3} & 0.4\end{array}\right]$
- H^{\prime} is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons - association sensitivity
- Association Sensitivity
- Strictly decreasing in increasing association (SDIA) - W (H^{\prime}) $<\mathrm{W}(\mathrm{H})$

Association Sensitivity

- These indices can also not differentiate the following two allocations
- $\mathbf{H}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], H^{\prime}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.4 & 0.8 \\ 0.3 & \mathbf{0 . 3} & 0.4\end{array}\right]$
- H^{\prime} is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons - association sensitivity
- Association Sensitivity
- Strictly decreasing in increasing association (SDIA) - W (H^{\prime}) $<\mathrm{W}(\mathrm{H})$
- H^{\prime} is obtained from H by a sequence of association increasing transfers

Association Sensitivity

- These indices can also not differentiate the following two allocations
- $\mathbf{H}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], H^{\prime}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & \mathbf{0 . 4} & 0.8 \\ 0.3 & \mathbf{0 . 3} & 0.4\end{array}\right]$
- H^{\prime} is obtained from H by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002))
- The second form of inequality across persons - association sensitivity
- Association Sensitivity
- Strictly decreasing in increasing association (SDIA) - W (H^{\prime}) $<\mathrm{W}(\mathrm{H})$
- H^{\prime} is obtained from H by a sequence of association increasing transfers
- Proposition: A well-being index that aggregates across persons first and then across dimensions is not sensitive to association among dimensions

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- Possible association sensitive well-being Index (\mathcal{W}) :

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- Possible association sensitive well-being Index (\mathcal{W}) :
- First stage: aggregates across dimensions by $\mu_{\beta}(\cdot)$. Second stage: aggregates across persons by $\mu_{\alpha}(\cdot)$

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- Possible association sensitive well-being Index (\mathcal{W}) :
- First stage: aggregates across dimensions by $\mu_{\beta}(\cdot)$. Second stage: aggregates across persons by $\mu_{\alpha}(\cdot)$
- $\mathcal{W}(\mathrm{X})=\mu_{\alpha}\left(\mu_{\beta}\left(x_{1 *}\right), \ldots, \mu_{\beta}\left(x_{N *}\right)\right)$

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- Possible association sensitive well-being Index (\mathcal{W}) :
- First stage: aggregates across dimensions by $\mu_{\beta}(\cdot)$. Second stage: aggregates across persons by $\mu_{\alpha}(\cdot)$
- $\mathcal{W}(\mathrm{X})=\mu_{\alpha}\left(\mu_{\beta}\left(x_{1 *}\right), \ldots, \mu_{\beta}\left(x_{N *}\right)\right)$
- \mathcal{W} satisfies $\mathrm{NM}, \mathrm{LH}, \mathrm{SP}, \mathrm{M}, \mathrm{PRI}, \mathrm{CN}, \mathrm{SC}, \mathrm{UM}$, and

Association Sensitivity

- Corollary: No path independent well-being index is sensitive to association among dimensions
- To be association sensitive the aggregation must take place across dimensions first and then across persons
- Possible association sensitive well-being Index (\mathcal{W}) :
- First stage: aggregates across dimensions by $\mu_{\beta}(\cdot)$. Second stage: aggregates across persons by $\mu_{\alpha}(\cdot)$
- $\mathcal{W}(\mathrm{X})=\mu_{\alpha}\left(\mu_{\beta}\left(x_{1 *}\right), \ldots, \mu_{\beta}\left(x_{N *}\right)\right)$
- \mathcal{W} satisfies $\mathrm{NM}, \mathrm{LH}, \mathrm{SP}, \mathrm{M}, \mathrm{PRI}, \mathrm{CN}, \mathrm{SC}, \mathrm{UM}$, and
- SDIA if and only if $\alpha<\beta \leq 1$

Policy Exercise

$\mathrm{H}=$| | Dim 1 | Dim 2 | Dim 3 |
| :---: | :---: | :---: | :---: |
| Person 1 | 0.8 | 0.8 | 0.3 |
| Person 2 | 0.4 | 0.3 | 0.8 |
| Person 3 | 0.3 | 0.4 | 0.4 |

- Where should the dollar be spent according to \mathcal{W} ?

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \text { Dim 1 } & \text { Dim 2 } & \text { Dim 3 } \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \operatorname{Dim} 1 & \operatorname{Dim} 2 & \operatorname{Dim} 3 \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$
- Spend the dollar on dim 1 of person 3

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \text { Dim 1 } & \text { Dim 2 } & \text { Dim 3 } \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$
- Spend the dollar on dim 1 of person 3
- Total well-being is $=0.465$

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \text { Dim 1 } & \text { Dim 2 } & \text { Dim 3 } \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$
- Spend the dollar on dim 1 of person 3
- Total well-being is $=0.465$
- Spend the dollar on dim 2 of person 2

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \text { Dim 1 } & \text { Dim 2 } & \text { Dim 3 } \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$
- Spend the dollar on dim 1 of person 3
- Total well-being is $=0.465$
- Spend the dollar on dim 2 of person 2
- Total well-being is $=0.456$

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \text { Dim 1 } & \text { Dim 2 } & \text { Dim 3 } \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$
- Spend the dollar on dim 1 of person 3
- Total well-being is $=0.465$
- Spend the dollar on dim 2 of person 2
- Total well-being is $=0.456$
- Spend the dollar on dim 3 of person 1

Policy Exercise

$$
\mathrm{H}=\begin{array}{|c|c|c|c|}
\hline & \text { Dim 1 } & \text { Dim 2 } & \text { Dim 3 } \\
\hline \text { Person 1 } & 0.8 & 0.8 & 0.3 \\
\hline \text { Person 2 } & 0.4 & 0.3 & 0.8 \\
\hline \text { Person 3 } & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
$$

- Where should the dollar be spent according to \mathcal{W} ?
- Suppose, $\alpha=-2$ and $\beta=0.1$
- Spend the dollar on dim 1 of person 3
- Total well-being is $=0.465$
- Spend the dollar on dim 2 of person 2
- Total well-being is $=0.456$
- Spend the dollar on dim 3 of person 1
- Total well-being is $=0.452$

Application to Mexico (Income, Education, and Health)

State	HDI (WA)		W_{F} $\alpha=-2$		\mathcal{W} $\beta=-1$ $\alpha=-3$	
San Luis Potosí	0.716	(24)	0.258	(21)	0.223	(22)
Sinaloa	0.751	(17)	0.268	(20)	0.232	(18)
Sonora	0.790	(07)	0.386	(06)	0.309	(06)
Tabasco	0.719	(22)	0.296	(15)	0.254	(14)
Tamaulipas	0.771	(12)	0.349	(08)	0.287	(08)
Tlaxcala	0.736	(19)	0.309	(13)	0.258	(12)
Veracruz de I dIL	0.698	(27)	0.213	(29)	0.193	(29)

Application to Mexico (Income, Education, and Health)

State	HDI (WA)		W F		\mathcal{W}	
$\alpha=-2$	$\beta=-1$ $\alpha=-3$					
San Luis Potosí	0.716	(24)	0.258	(21)	0.223	(22)
Sinaloa	0.751	(17)	0.268	(20)	0.232	(18)
Sonora	0.790	(07)	0.386	(06)	0.309	(06)
Tabasco	0.719	(22)	0.296	(15)	0.254	(14)
Tamaulipas	0.771	(12)	0.349	(08)	0.287	(08)
Tlaxcala	0.736	(19)	0.309	(13)	0.258	(12)
Veracruz de I dIL	0.698	(27)	0.213	(29)	0.193	(29)

- A sequence of association increasing transfers for Tabasco

Application to Mexico (Income, Education, and Health)

State	$\mathrm{HDI}\left(\mathrm{W}_{A}\right)$		W_{F} $\alpha=-2$		W $\beta=-1$ $\alpha=-3$	
San Luis Potosí	0.716	(24)	0.258	(21)	0.223	(22)
Sinaloa	0.751	(17)	0.268	(20)	0.232	(18)
Sonora	0.790	(07)	0.386	(06)	0.309	(06)
Tabasco	0.719	(22)	0.296	(15)	0.254	(14)
Tamaulipas	0.771	(12)	0.349	(08)	0.287	(08)
Tlaxcala	0.736	(19)	0.309	(13)	0.258	(12)
Veracruz de I dIL	0.698	(27)	0.213	(29)	0.193	(29)

- A sequence of association increasing transfers for Tabasco

State	$\mathrm{HDI}\left(\mathrm{W}_{A}\right)$	W_{F} $\alpha=-2$		\mathcal{W} $(\beta=-1, \alpha=-3)$	
Tabasco		(22)	0.296	(15)	0.244

Summary

- Additive Indices are not sensitive to inequality across persons

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important
- Aggregation must take place across dimensions first, and then across persons

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important
- Aggregation must take place across dimensions first, and then across persons
- We treated dimensions symmetrically; we could also apply weighted generalized mean

Summary

- Additive Indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form fails to provide proper policy implication
- Dimensional interactions are important
- Aggregation must take place across dimensions first, and then across persons
- We treated dimensions symmetrically; we could also apply weighted generalized mean
- A well-being index yet to be derived that takes different elasticity of substitution into account

Inequality Measures

- Study of inequality is important on its own

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- Weighted generalized mean of order γ

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- Weighted generalized mean of order γ
- $\mu_{\gamma, a}=\mu_{\gamma}\left(h_{1}, \ldots, h_{M} ; a_{1}, \ldots, a_{M}\right)=\left(\frac{1}{M} \sum_{m=1}^{M} a_{m} h_{m}^{\gamma}\right)^{1 / \gamma}$;

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- Weighted generalized mean of order γ
- $\mu_{\gamma, a}=\mu_{\gamma}\left(h_{1}, \ldots, h_{M} ; a_{1}, \ldots, a_{M}\right)=\left(\frac{1}{M} \sum_{m=1}^{M} a_{m} h_{m}^{\gamma}\right)^{1 / \gamma} ;$
- where $\gamma \neq 0, a_{m} \geq 0$ for all m, and $\sum_{m=1}^{M} a_{m}=1$

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- Weighted generalized mean of order γ
- $\mu_{\gamma, a}=\mu_{\gamma}\left(h_{1}, \ldots, h_{M} ; a_{1}, \ldots, a_{M}\right)=\left(\frac{1}{M} \sum_{m=1}^{M} a_{m} h_{m}^{\gamma}\right)^{1 / \gamma}$;
- where $\gamma \neq 0, a_{m} \geq 0$ for all m, and $\sum_{m=1}^{M} a_{m}=1$
- $\mu_{\gamma, a}=\mu_{\gamma}\left(h_{1}, \ldots, h_{M} ; a_{1}, \ldots, a_{M}\right)=\prod_{m=1}^{M} h_{m}^{a_{m}} ; \gamma=0$

Inequality Measures

- Study of inequality is important on its own
- Multiple dimensions vs single-dimension
- Construction of inequality indices
- Association Sensitivity: aggregate first across dimensions
- Weighted generalized mean of order γ
- $\mu_{\gamma, a}=\mu_{\gamma}\left(h_{1}, \ldots, h_{M} ; a_{1}, \ldots, a_{M}\right)=\left(\frac{1}{M} \sum_{m=1}^{M} a_{m} h_{m}^{\gamma}\right)^{1 / \gamma}$;
- where $\gamma \neq 0, a_{m} \geq 0$ for all m, and $\sum_{m=1}^{M} a_{m}=1$
- $\mu_{\gamma, a}=\mu_{\gamma}\left(h_{1}, \ldots, h_{M} ; a_{1}, \ldots, a_{M}\right)=\prod_{m=1}^{M} h_{m}^{a_{m}} ; \gamma=0$
- $\gamma=1$: Weighted AM $\left(\mu_{1, a}\right) ; \gamma=0$: Weighted GM $\left(\mu_{0, a}\right)$;
$\gamma=-1$: Weighted HM $\left(\mu_{-1, a}\right)$

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $I(X)=0$

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $\mathrm{I}(\mathrm{X})=0$
- Symmetry in Persons (SP). Personal identity does not matter

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $\mathrm{I}(\mathrm{X})=0$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $\mathrm{I}(\mathrm{X})=0$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $\mathrm{I}(\mathrm{X})=0$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.
- Decomposability (D). Overall inequality can be expressed as a general function of the subgroup means, population sizes and inequality values.

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $\mathrm{I}(\mathrm{X})=0$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.
- Decomposability (D). Overall inequality can be expressed as a general function of the subgroup means, population sizes and inequality values.
- Subgroup Consistency (SC). If the inequality of one subgroup rises and the other is unaltered, then overall inequality rise

Basic Axioms Satisfied by Inequality Indices: I(X)

- Normalization (NM). If each person has the same achievement vector, $I(X)=0$
- Symmetry in Persons (SP). Personal identity does not matter
- Scale Invariance (SI). If all elements in X is increased by the same amount, then inequality does not change
- Population Replication Invariance (PRI). Replication of the same population several times does not change overall.
- Decomposability (D). Overall inequality can be expressed as a general function of the subgroup means, population sizes and inequality values.
- Subgroup Consistency (SC). If the inequality of one subgroup rises and the other is unaltered, then overall inequality rise
- Continuity (CN). $\mathrm{I}(\mathrm{H})$ does not change abruptly due to a change in any of the elements in H

Multidimensional Inequality Indices

- Bourguignon Index (1999)

Multidimensional Inequality Indices

- Bourguignon Index (1999)
- Maasoumi Index $(1986,1999)$

Multidimensional Inequality Indices

- Bourguignon Index (1999)
- Maasoumi Index $(1986,1999)$
- Tsui Index $(1995,1999)$

Multidimensional Inequality Indices

- Bourguignon Index (1999)
- Maasoumi Index $(1986,1999)$
- Tsui Index $(1995,1999)$
- Gajdos and Weymark Index (2005)

Multidimensional Inequality Indices

- Bourguignon Index (1999)
- Maasoumi Index $(1986,1999)$
- Tsui Index $(1995,1999)$
- Gajdos and Weymark Index (2005)
- Decanq and Lugo (2008)

Bourguignon Index (1999)

- First, derives a well-being index

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.
- Second stage: Aggregates across persons by the aggregator function: $W=\frac{1}{N} \sum_{i=1}^{N} U_{n}$

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.
- Second stage: Aggregates across persons by the aggregator function: $W=\frac{1}{N} \sum_{i=1}^{N} U_{n}$
- Defines $\bar{W}=\bar{U}$, where $\bar{U}=\mu_{\beta, a}^{\alpha}\left[\mu_{1}\left(x_{* 1}\right), \ldots, \mu_{1}\left(x_{* D}\right)\right]$

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.
- Second stage: Aggregates across persons by the aggregator function: $W=\frac{1}{N} \sum_{i=1}^{N} U_{n}$
- Defines $\bar{W}=\bar{U}$, where $\bar{U}=\mu_{\beta, a}^{\alpha}\left[\mu_{1}\left(x_{* 1}\right), \ldots, \mu_{1}\left(x_{* D}\right)\right]$
- Inequality index

$$
\mathrm{I}_{B}=1-\frac{\mathrm{W}}{\bar{W}}
$$

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.
- Second stage: Aggregates across persons by the aggregator function: $W=\frac{1}{N} \sum_{i=1}^{N} U_{n}$
- Defines $\bar{W}=\bar{U}$, where $\bar{U}=\mu_{\beta, a}^{\alpha}\left[\mu_{1}\left(x_{* 1}\right), \ldots, \mu_{1}\left(x_{* D}\right)\right]$
- Inequality index

$$
\mathrm{I}_{B}=1-\frac{\mathrm{W}}{\bar{W}}
$$

- β is substitution parameter and α is inequality aversion parameter

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.
- Second stage: Aggregates across persons by the aggregator function: $W=\frac{1}{N} \sum_{i=1}^{N} U_{n}$
- Defines $\bar{W}=\bar{U}$, where $\bar{U}=\mu_{\beta, a}^{\alpha}\left[\mu_{1}\left(x_{* 1}\right), \ldots, \mu_{1}\left(x_{* D}\right)\right]$
- Inequality index

$$
\mathrm{I}_{B}=1-\frac{\mathrm{W}}{\bar{W}}
$$

- β is substitution parameter and α is inequality aversion parameter
- I_{B} satisfies $\mathrm{NM}, \mathrm{SP}, \mathrm{SI}, \mathrm{D}, \mathrm{RI}$, and both forms of inequality

Bourguignon Index (1999)

- First, derives a well-being index
- First Stage: Aggregates across dimensions by the aggregator function $U_{n}=\mu_{\beta, a}^{\alpha}\left(x_{n 1}, \ldots, x_{n D}\right) ; \beta<1,0<\alpha<1$.
- Second stage: Aggregates across persons by the aggregator function: $W=\frac{1}{N} \sum_{i=1}^{N} U_{n}$
- Defines $\bar{W}=\bar{U}$, where $\bar{U}=\mu_{\beta, a}^{\alpha}\left[\mu_{1}\left(x_{* 1}\right), \ldots, \mu_{1}\left(x_{* D}\right)\right]$
- Inequality index

$$
\mathrm{I}_{B}=1-\frac{\mathrm{W}}{\bar{W}}
$$

- β is substitution parameter and α is inequality aversion parameter
- I_{B} satisfies $\mathrm{NM}, \mathrm{SP}, \mathrm{SI}, \mathrm{D}, \mathrm{RI}$, and both forms of inequality
- Inequality increases with correlation when $\alpha<\beta$

Bourguignon Index (1999)

- Example: $X=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Bourguignon Index (1999)

- Example: $X=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- First stage aggregation across dimensions yields

$$
U_{1}=0.68, \quad U_{2}=0.63, \quad U_{3}=0.60
$$

Bourguignon Index (1999)

- Example: $X=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- First stage aggregation across dimensions yields

$$
U_{1}=0.68, \quad U_{2}=0.63, \quad U_{3}=0.60
$$

- Second stage aggregation across persons yields

$$
W=\frac{1}{3}(0.68+0.63+0.60)=0.64
$$

Bourguignon Index (1999)

- Example: $\mathrm{X}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- First stage aggregation across dimensions yields

$$
U_{1}=0.68, \quad U_{2}=0.63, \quad U_{3}=0.60
$$

- Second stage aggregation across persons yields

$$
W=\frac{1}{3}(0.68+0.63+0.60)=0.64
$$

- Create $\mathbf{h}=(0.5,0.5,0.5)$

Bourguignon Index (1999)

- Example: $\mathrm{X}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- First stage aggregation across dimensions yields

$$
U_{1}=0.68, \quad U_{2}=0.63, \quad U_{3}=0.60
$$

- Second stage aggregation across persons yields

$$
W=\frac{1}{3}(0.68+0.63+0.60)=0.64
$$

- Create $\mathbf{h}=(0.5,0.5,0.5)$
- Then $\bar{U}=\mu_{-2, a}^{0.5}(0.5,0.5,0.5)=0.71$. $\bar{W}=0.71$

Bourguignon Index (1999)

- Example: $\mathrm{X}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- First stage aggregation across dimensions yields

$$
U_{1}=0.68, U_{2}=0.63, U_{3}=0.60 .
$$

- Second stage aggregation across persons yields

$$
W=\frac{1}{3}(0.68+0.63+0.60)=0.64
$$

- Create $\mathbf{h}=(0.5,0.5,0.5)$
- Then $\bar{U}=\mu_{-2, a}^{0.5}(0.5,0.5,0.5)=0.71$. $\bar{W}=0.71$
- Inequality index

$$
\mathrm{I}_{B}=1-\frac{0.64}{0.71}=0.099
$$

Bourguignon Index (1999)

- Example: $\mathrm{X}=\left[\begin{array}{lll}0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4\end{array}\right], \beta=-2, \alpha=0.5, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- First stage aggregation across dimensions yields

$$
U_{1}=0.68, \quad U_{2}=0.63, \quad U_{3}=0.60
$$

- Second stage aggregation across persons yields

$$
W=\frac{1}{3}(0.68+0.63+0.60)=0.64
$$

- Create $\mathbf{h}=(0.5,0.5,0.5)$
- Then $\bar{U}=\mu_{-2, a}^{0.5}(0.5,0.5,0.5)=0.71$. $\bar{W}=0.71$
- Inequality index

$$
\mathrm{I}_{B}=1-\frac{0.64}{0.71}=0.099
$$

- Problems: role of inequality aversion parameter is not clear

Maasoumi Index (1986, 1999)

- A two stage procedure

Maasoumi Index $(1986,1999)$

- A two stage procedure
- The first stage is a weighted generalized mean

$$
U_{n}=\mu_{\beta, a}\left(x_{n 1}, \ldots, x_{n D}\right)
$$

Maasoumi Index $(1986,1999)$

- A two stage procedure
- The first stage is a weighted generalized mean

$$
U_{n}=\mu_{\beta, a}\left(x_{n 1}, \ldots, x_{n D}\right)
$$

- The second stage is a generalized entropy

$$
\mathrm{I}_{M}=\left\{\begin{array}{l}
\frac{1}{\alpha(1-\alpha)} \frac{1}{N} \sum_{i=1}^{n}\left(1-\left(\frac{U_{n}}{\bar{S}}\right)^{\alpha}\right) \text { for } \alpha \neq 0,1 \\
\frac{1}{N} \sum_{i=1}^{n} \log \left(\frac{\bar{S}}{U_{n}}\right) \text { for } \alpha=0 \\
\frac{1}{N} \sum_{i=1}^{n} \frac{U_{n}}{S} \log \left(\frac{U_{n}}{S}\right) \text { for } \alpha=1
\end{array}\right.
$$

Maasoumi Index $(1986,1999)$

- A two stage procedure
- The first stage is a weighted generalized mean

$$
U_{n}=\mu_{\beta, a}\left(x_{n 1}, \ldots, x_{n D}\right)
$$

- The second stage is a generalized entropy

$$
\mathrm{I}_{M}=\left\{\begin{array}{l}
\frac{1}{\alpha(1-\alpha)} \frac{1}{N} \sum_{i=1}^{n}\left(1-\left(\frac{U_{n}}{\bar{S}}\right)^{\alpha}\right) \text { for } \alpha \neq 0,1 . \\
\frac{1}{N} \sum_{i=1}^{n} \log \left(\frac{\bar{S}}{U_{n}}\right) \text { for } \alpha=0 \\
\frac{1}{N} \sum_{i=1}^{n} \frac{U_{n}}{S} \log \left(\frac{U_{n}}{S}\right) \text { for } \alpha=1
\end{array}\right.
$$

- $\bar{S}=\frac{1}{N} \sum_{i=1}^{N} U_{n}$

Maasoumi Index $(1986,1999)$

- A two stage procedure
- The first stage is a weighted generalized mean

$$
U_{n}=\mu_{\beta, a}\left(x_{n 1}, \ldots, x_{n D}\right)
$$

- The second stage is a generalized entropy

$$
\mathrm{I}_{M}=\left\{\begin{array}{l}
\frac{1}{\alpha(1-\alpha)} \frac{1}{N} \sum_{i=1}^{n}\left(1-\left(\frac{U_{n}}{\bar{S}}\right)^{\alpha}\right) \text { for } \alpha \neq 0,1 \\
\frac{1}{N} \sum_{i=1}^{n} \log \left(\frac{\bar{S}}{U_{n}}\right) \text { for } \alpha=0 \\
\frac{1}{N} \sum_{i=1}^{n} \frac{U_{n}}{S} \log \left(\frac{U_{n}}{S}\right) \text { for } \alpha=1
\end{array}\right.
$$

- $\bar{S}=\frac{1}{N} \sum_{i=1}^{N} U_{n}$
- Problems: Not sure what restrictions on parameter satisfies different transfer properties

Tsui Index $(1995,1999)$

- Tsui (1995)

$$
\mathrm{I}_{T R I}=1-\left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D}\left(\frac{x_{n d}}{\mu_{d}}\right)^{a_{d}}\right]^{1 / \sum_{i=1}^{D} a_{d}}
$$

Tsui Index $(1995,1999)$

- Tsui (1995)

$$
\mathrm{I}_{T R I}=1-\left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D}\left(\frac{x_{n d}}{\mu_{d}}\right)^{a_{d}}\right]^{1 / \sum_{i=1}^{D} a_{d}}
$$

- Tsui also developed more indices in 1999 based on generalized entropy

Tsui Index $(1995,1999)$

- Tsui (1995)

$$
\mathrm{I}_{T R I}=1-\left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D}\left(\frac{x_{n d}}{\mu_{d}}\right)^{a_{d}}\right]^{1 / \sum_{i=1}^{D} a_{d}}
$$

- Tsui also developed more indices in 1999 based on generalized entropy
- Unlike Maasoumi, these indices had parameter specification to satisfy transfer.

Tsui Index $(1995,1999)$

- Tsui (1995)

$$
\mathrm{I}_{T R I}=1-\left[\frac{1}{N} \sum_{n=1}^{N} \prod_{d=1}^{D}\left(\frac{x_{n d}}{\mu_{d}}\right)^{a_{d}}\right]^{1 / \sum_{i=1}^{D} a_{d}}
$$

- Tsui also developed more indices in 1999 based on generalized entropy
- Unlike Maasoumi, these indices had parameter specification to satisfy transfer.
- Problem: Tsui parameters are not interpretable.

Multidimensional Gini Indices

- Gajdos and Weymark Index (2005)

Multidimensional Gini Indices

- Gajdos and Weymark Index (2005)
- First stage: Gini social evaluation function

$$
U_{d}=\sum_{n=1}^{N}\left(\frac{2 n-1}{N^{2}}\right) \tilde{x}_{n}
$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

Multidimensional Gini Indices

- Gajdos and Weymark Index (2005)
- First stage: Gini social evaluation function

$$
U_{d}=\sum_{n=1}^{N}\left(\frac{2 n-1}{N^{2}}\right) \tilde{x}_{n}
$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

- Second stage: generalized mean across dimensions.

$$
\mathbf{I}_{G W}=\mu_{\beta}\left(U_{1}, \ldots, U_{D}\right) \text { for } \beta \leq 1
$$

Multidimensional Gini Indices

- Gajdos and Weymark Index (2005)
- First stage: Gini social evaluation function

$$
U_{d}=\sum_{n=1}^{N}\left(\frac{2 n-1}{N^{2}}\right) \tilde{x}_{n}
$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

- Second stage: generalized mean across dimensions.

$$
\mathbf{I}_{G W}=\mu_{\beta}\left(U_{1}, \ldots, U_{D}\right) \text { for } \beta \leq 1
$$

- Limitation: the order of aggregation

Multidimensional Gini Indices

- Gajdos and Weymark Index (2005)
- First stage: Gini social evaluation function

$$
U_{d}=\sum_{n=1}^{N}\left(\frac{2 n-1}{N^{2}}\right) \tilde{x}_{n}
$$

where \tilde{x} is obtained by arranging $\{x\}_{n=1}^{N}$ in a descending order.

- Second stage: generalized mean across dimensions.

$$
\mathbf{I}_{G W}=\mu_{\beta}\left(U_{1}, \ldots, U_{D}\right) \text { for } \beta \leq 1
$$

- Limitation: the order of aggregation
- $\mathrm{I}_{G W}$ is not sensitive to correlation among dimensions

Multidimensional Gini Indices

- Decancq and Lugo (2008)

Multidimensional Gini Indices

- Decancq and Lugo (2008)
- Reversed order of aggregation

Multidimensional Gini Indices

- Decancq and Lugo (2008)
- Reversed order of aggregation
- First stage: generalized mean across dimensions.

$$
U_{n}=\mu_{\beta}\left(x_{n *}\right) \text { for } \beta \leq 1
$$

Multidimensional Gini Indices

- Decancq and Lugo (2008)
- Reversed order of aggregation
- First stage: generalized mean across dimensions.

$$
U_{n}=\mu_{\beta}\left(x_{n *}\right) \text { for } \beta \leq 1
$$

- Second stage: Gini social evaluation function

$$
\mathrm{I}_{D L}=\sum_{n=1}^{N}\left(\frac{2 n-1}{N^{2}}\right) \tilde{U}_{n}
$$

where \tilde{U}_{n} is obtained by arranging $\left\{U_{n}\right\}_{n=1}^{N}$ in a descending order.

Summary

- Sequence of aggregation matters

Summary

- Sequence of aggregation matters
- Association sensitivity requires aggregation across dimenisons first and then across persons

