Date: Sept 3

Edu

0.8

0.3

0.4

Hel

0.8

0.3

0.4

Instructor: Suman Seth

 $\frac{\text{Inc}}{0.8}$

0.4

0.3

Assignment
MD Inequality and Well-Being Indices

1. Paper Based Prpblems:

Consider the following normalized achievement matrices.

	\$											
$X = \begin{cases} 1 & \text{if } X = X = \begin{cases} 1 & \text{if } X = X = X = X = X = X = X = X = X = X$		Inc	Edu	Hel	, Y =		Inc	Edu	Hel	, Z =		
	Per 1	0.8	0.8	0.3		Per 1	0.6	0.55	0.55		Per 1	
	Per 2	0.4	0.3	0.8		Per 2	0.6	0.55	0.55		Per 2	
	Per 3	0.3	0.4	0.4		Per 3	0.3	0.4	0.4		Per 3	

- (a) Calculate the well-being index from X, Y and Z using W_A , W_H , W_F for $\alpha = -2$, and W_S for $\alpha = -2$, $\beta = 0.5$. (FYI All measures for X has already been calculated in the class.)
- (b) For which measures, the over well-being between X and Y, and X and Z differ?

2. Reconsider the following matrix:

		Inc	Edu	Hel
v –	Per 1	0.8	0.8	0.3
Λ –	Per 2	0.4	0.3	0.8
	Per 3	0.3	0.4	0.4

(a) Assume that the value of β is fixed at 0.9. Calculate the Bourguignon inequality index for $\alpha = 0.1, 0.6$, and 0.85. Is the inequality increasing with α or decreasing with α ?

3. Computer-Based Problem (using STATA).

Import the dataset "Achievement1.csv" into STATA. To import the dataset, go to 'File \rightarrow Import \rightarrow ASCII dataset created by spreadsheet' and select the dataset.

There are achievement levels of 100 households for three dimensions - income (\$), health (BMI), and education (Literacy Rate). Generate a variable **logincome** by taking logarithm of income.

First, normalize the achievements with respect to the following lower and upper limits (as it is done for the HDI).

Dimensions	Lower	Upper
${\rm Income}$	1.5	4.7
Health	16	25
Education	0	1

Check the mean and standard deviation of each dimension across households. Calculate the correlation among the dimensions. (use the command corr(var1, var2, var3)).

Calculate the W_A , the W_F with $\alpha = -2$, and \mathcal{W} with $\alpha = -2$ and $\beta = 0.5$ using the dataset. ('egen' might be a helpful command. Type 'help egen' in STATA command window or look at the handout distributed)

Repeat the excercise for the second dataset "Achievement2.csv". What difference did you have from the earlier results.