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Introduction

Introduction: Robustness versus Dominance

I In general robustness analysis seeks to assess the sensitivity of rankings
generated by an indicator to changes in the indicator’s key parameters

I Stochastic dominance conditions provide an extreme form of robustness:
if they are fulfilled a comparison is robust to a broad range of parameter
values

HA(k) 5 HB(k)∀k ∈ [1,D]↔ FA(c) = FB(c)∀c ∈ [0,D]
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Introduction

Robustness of rankings generated by the AF measures
(including the MPI)

The rankings generated by the AF measures can be sensitive to
changes in the measures’ key parameters, namely:

1. The dimension-specific poverty lines (i.e. the ”first” cut-off):
zd

2. The weights attached to every variable/dimension: wd

3. The value that the weighted sum of deprivations need to
surpass in order to identify someone as poor (i.e. the
”second” cut-off): k
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Introduction

Statistical tools to address the robustness of rankings
generated by the AF measures

In principle there are two approaches to assessing the robustness of
AF rankings to changes in the key parameters

1. To ”fix” all parameters and check sensitivity to changes in one
set of parameters.

I One example: Batana (2008) fixes weights and poverty lines
and checks sensitivity of rankings to changes in k

I Another one: Alkire and Foster (2009) and Lasso de la Vega
(2009) derive dominance conditions over k keeping weights
and lines fixed

2. To derive conditions under which a ranking is robust
regardless of lines, weights and multidimensional counting
thresholds (this is harder but still doable)
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Introduction

Statistical tools to address the robustness of rankings
generated by the AF measures

In this lecture we are going to review:

I Some basic (first-order) stochastic dominance conditions for
the M0 and H involving multidimensional thresholds, weights
and lines.

I Some basic robustness tests for weights.
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Stochastic dominance conditions for H and M0

The counting vector: key ingredient for dominance
conditions for M0 and H

For individual i define D − ci , where:

ci =
D∑

d=1

wd I (xid 5 zd)

Then consider a distribution of deprivations, D − c , in the
population that can take values from 0 (poor in every dimension)
to D (non-poor in every dimention). A typical cumulative
distribution is:
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Stochastic dominance conditions for H and M0

A typical cumulative distribution of D-c
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Stochastic dominance conditions for H and M0

The dominance condition over k

The key results are the following:

FA(D−c) 5 FB(D−c)∀(D−c) ∈ [0,D]↔ HA 5 HB∀(D−c) ∈ [0,D]

HA 5 HB∀(D − c) ∈ [0,D]→ MA 5 MB∀(D − c) ∈ [0,D]
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Stochastic dominance conditions for H and M0

The key dominance result in a pair of graphs: I
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Stochastic dominance conditions for H and M0

The key dominance result in a pair of graphs: II
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Stochastic dominance conditions for H and M0

Proof: Alkire and Foster explained

Notice that M0 can be expressed in terms of H the following way:

M0(k) =
1

D
[H(D)D +

D−1∑
j=k

j [H(j)− H(j + 1)]]

Simplifying this expression yields:

M0(k) =
1

D
[

D∑
j=k+1

H(j) + kH(k)]

Therefore HA(k) 5 HB(k)∀k ∈ [1,D]→ MA(k) 5 MB(k)∀k ∈ [1,D]
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Stochastic dominance conditions for H and M0

Further dominance results: now incorporating weights and
poverty lines

We saw that for MA(k) 5 MB(k)∀k ∈ [1,D] to hold we need:
HA(k) 5 HB(k)∀k ∈ [1,D]

Are there any conditions that ensure that the latter holds, in turn, for
any weights and poverty lines?

Yes, it is work in progress, but the condition seems to be the following:

FA(x1, ...xD) = FB(x1, ...xD)∀(x1, ...xD) ∈ [x1,min, x1,max ]...×...[xD,min, xD,max ]

FA(x1, ...xD) 5 FB(x1, ...xD)∀(x1, ...xD) ∈ [x1,min, x1,max ]...×...[xD,min, xD,max ]
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Robustness Results

Example: Test of dominance across six African countries
by Batana
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Robustness Results

Other ways of testing robustness of ranking

Why we need other ways

I Stochastic Dominance test are useful for pair-by-pair analysis

I If one country stochastically dominates another country then
the result holds for all parameters (all weights and cut-offs)

I However, stochastic dominance condition may be too
stringent and may not hold for the majority of the countries

I We need some other ways to understand how robust are the
ranking to changes in weights and cut-offs
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Robustness Results

Other ways of testing robustness of ranking

Why we need other ways

I Suppose we have 100 countries

I Which means C 100
2 = (100× 99) /2 = 4950 pairwise

comparisons

I However, stochastic dominance condition may be too
stringent and may not hold for majority of the countries

I We need some other ways to understand how robust are the
rankings to changes in weights and cut-offs

I We may not always need to check dominance for the entire
distribution

I Smaller sample size for extreme values of the cut-off
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Robustness Results

Other ways of testing robustness of ranking

Framework

I There are N countries

I Weights for D dimensions are denoted by the vector

w = (w1,w2, . . . ,wD)

I Set of first cut-offs for D dimensions is denoted by the vector

z = (z1, z2, . . . , zD)

I Second cut-off is denoted by k ∈ {1, 2, . . . ,D}
I Let us denote the rank of N countries by the column vector

R = (R1,R2, . . . ,RN)

We assume R1 < R2 < . . . < RN
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Robustness Results

Other ways of testing robustness of ranking

Framework
I Now, suppose we need to check the robustness of ranking R

with respect to a alternative parametric specification

I It could be for a different set of weights w ′

I It could be for a different set of first cut-offs z ′

I It could be for a different second cut-off k ′

I It could be that the number of dimensions change to D ′

I Let the new ranking under a different specification be denoted
by the column vector

R ′ =
(
R ′

1,R
′
2, . . . ,R

′
N

)
I If Rn = R ′

n for all n = 1, . . . ,N then the ranking is completely
robust with respect to this alternative specification

I However, if it is not then we need to find a method to check
the robustness of ranking
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I Let the new ranking under a different specification be denoted
by the column vector

R ′ =
(
R ′

1,R
′
2, . . . ,R

′
N

)
I If Rn = R ′

n for all n = 1, . . . ,N then the ranking is completely
robust with respect to this alternative specification

I However, if it is not then we need to find a method to check
the robustness of ranking
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I One useful method is to check the rank correlation between
different sets of ranks

I Two methods
I Kendall’s Rank Correlation Method (τ)

I Also called Kendall’s Tau

I Spearman’s Rank Correlation Method (ρ)
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Kendall’s Rank Correlation Method

I Kendall’s Tau is based on

I The total number of concordance pairs (C )
I The total number of discordant pairs (D)

I Concordant pairs

I A pair n and n̄ is concordant if

Rn > Rn̄ and R ′n > R ′n̄

I The pair is discordant if

Rn > Rn̄ but R ′n < R ′n̄

I Then

τ =
C − D

C + D
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Example: Concordant and Discordant Pair

I Consider two countries: India and Pakistan

I Suppose under the initial specification, Pakistan performs
better than India

I Rank of India is greater than that of Pakistan

I If under the alternative specification, Pakistan performs better
than India

I Then the rank of the pair India and Pakistan is concordant

I If under the alternative specification, India performs better
than Pakistan

I Then the rank of the pair India and Pakistan is discordant
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Exploring Kendall’s Tau

I Kendall’s Tau is the normalized difference between the total
concordant and discordant pairs

I Note that C + D is the total number of comparisons given
that there is not tie of ranks

I Since the value of M0 is continuous, we assume no ties

I The maximum value that τ may take is +1
I Recall the situation when Rn = R ′n for all n

I The minimum value that τ may take is −1

I When the number of concordant pairs is equal to the number
of discordant pairs, then τ = 0
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Spearman’s Rank Correlation Method

I Spearman’s Rho is based on the different in ranks under two
specifications

I Let us define rn = Rn − R ′
n for all n = 1, . . . ,N

I rn is the difference of ranks for country n under two different
specifications

I Then Spearman’s Rho may be written as

ρ = 1−
6
∑N

n=1 r2
n

n (n2 − 1)

I when Rn = R ′n, then rn = 0 for all n and ρ = +1
I when Rn = R ′N−n for all n, then ρ = −1
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Empirical Illustration

I Alkire and Seth (2008) - Spearman’s Rank Correlation Table

I Application on 28 Indian states and nine dimensions using the
dataset of National Family Health Survey (NFHS) 2005

Cut-off (k) 3 4 5 6 7
4 1.00 - - - -
5 0.99 1.00 - - -
6 0.99 1.00 1.00 - -
7 0.97 0.97 0.98 0.98 -
8 0.96 0.96 0.96 0.97 0.98
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Empirical Illustration: Alkire ans Santos 2010
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