Inequality Adjusted HDI

Suman Seth

Vanderbilt University & OPHI

3rd September, 2009
Measuring Human Development

- Multidimensional in nature
Measuring Human Development

- Multidimensional in nature
- Mail challenges
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
 - Choice of indicators
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
 - Choice of indicators
 - Choice of appropriate weights
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
 - Choice of indicators
 - Choice of appropriate weights
 - Proper data collection methodology

Choice of normalization method for dimensions

For today’s lecture - it’s incorporating inequality in the measurement of human development

Suman Seth (Vanderbilt University & OPHI)
3rd September, 2009 2 / 30
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
 - Choice of indicators
 - Choice of appropriate weights
 - Proper data collection methodology
 - Proper aggregation methods incorporating various aspects

Suman Seth (Vanderbilt University & OPHI)

3rd September, 2009
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
 - Choice of indicators
 - Choice of appropriate weights
 - Proper data collection methodology
 - Proper aggregation methods incorporating various aspects
 - Choice of normalization method for dimensions
Measuring Human Development

- Multidimensional in nature
- Mail challenges
 - Choice of dimensions
 - Choice of indicators
 - Choice of appropriate weights
 - Proper data collection methodology
 - Proper aggregation methods incorporating various aspects
 - Choice of normalization method for dimensions

- For today’s lecture - its incorporating inequality in the measurement of human development
Briefly discuss the current methodology for measuring Human Development Index (HDI)
Outline of Today’s Lecture

- Briefly discuss the current methodology for measuring Human Development Index (HDI)
- Introduce basic framework for today’s discussion
Briefly discuss the current methodology for measuring Human Development Index (HDI)
Introduce basic framework for today’s discussion
Introduce related axioms
Briefly discuss the current methodology for measuring Human Development Index (HDI)

Introduce basic framework for today’s discussion

Introduce related axioms

Discuss various constructive proposals for incorporating inequality into human development
Basic Framework

- HDI is a composite index consisting of three sub-indices:
Basic Framework

- HDI is a composite index consisting of three sub-indices:
 - Per capits Gross Domestic Product (PGDP)
Basic Framework

- HDI is a composite index consisting of three sub-indices:
 - Per capita Gross Domestic Product (PGDP)
 - Life expectancy (LE) Index
Basic Framework

- HDI is a composite index consisting of three sub-indices:
 - Per capits Gross Domestic Product (PGDP)
 - Life expectancy (LE) Index
 - Education (E) Index
Basic Framework

- HDI is a composite index consisting of three sub-indices:
 - Per capits Gross Domestic Product (PGDP)
 - Life expectancy (LE) Index
 - Education (E) Index

- All indices are normalized between zero and one
HDI is a composite index consisting of three sub-indices:

- Per capits Gross Domestic Product (PGDP)
- Life expectancy (LE) Index
- Education (E) Index

All indices are normalized between zero and one

GDP Index

\[
\text{GDP Index} = \frac{\log (\text{PCGDP}) - \log (\$100)}{\log (\$40,000) - \log (\$100)}
\]
Basic Framework

- HDI is a composite index consisting of three sub-indices:
 - Per capits Gross Domestic Product (PGDP)
 - Life expectancy (LE) Index
 - Education (E) Index

- All indices are normalized between zero and one

- GDP Index
 \[\text{GDP Index} = \frac{\log (\text{PCGDP}) - \log ($100)}{\log ($40,000) - \log ($100)} \]

- Life Expectancy Index
 \[\text{LE Index} = \frac{\text{LE} - 25}{85 - 25} \]
Basic Framework

- Education Index

Adult literacy index $\text{AL} = 100$

Gross school enrolment index $\text{GSE} = 100$

Education Index = $\text{AL} + \text{GSE}$

HDI = GDP Index + Life exp Index + Education Index

Suman Seth (Vanderbilt University & OPHI)

Inequality Adjusted HDI

3rd September, 2009
Basic Framework

- Education Index
 - Consists of two sub-indices
Basic Framework

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
Basic Framework

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
Basic Framework

- Education Index
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
 - Adult literacy index
 \[
 \text{Adult literacy index} = \frac{AL - 0}{100 - 0}
 \]
Basic Framework

- **Education Index**
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index

- **Adult literacy index**
 \[
 \frac{AL - 0}{100 - 0}
 \]

- **Gross school enrolment index**
 \[
 \frac{GSE - 0}{100 - 0}
 \]
Basic Framework

- **Education Index**
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index

- **Adult literacy index**
 \[\text{AL} - 0 = \frac{\text{AL} - 0}{100 - 0} \]

- **Gross school enrolment index**
 \[\text{GSE} - 0 = \frac{\text{GSE} - 0}{100 - 0} \]

- **Education Index**
 \[\frac{2}{3} \times \text{Adult literacy index} + \frac{1}{3} \times \text{Gross school enrolment index} \]
Basic Framework

- **Education Index**
 - Consists of two sub-indices
 - Adult literacy (AL) index
 - Gross school enrolment (GSE) index
 - **Adult literacy index**
 \[\text{AL} = \frac{\text{AL} - 0}{100 - 0} \]
 - **Gross school enrolment index**
 \[\text{GSE} = \frac{\text{GSE} - 0}{100 - 0} \]
 - **Education Index**
 \[\text{Education Index} = \frac{2}{3} \times \text{Adult literacy index} + \frac{1}{3} \times \text{Gross school enrolment index} \]

- **HDI**
 \[\text{HDI} = \frac{1}{3} \times \text{GDP Index} + \frac{1}{3} \times \text{Life exp Index} + \frac{1}{3} \times \text{Education Index} \]
2004 HDI Table: Top Ten Countries

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>HDI</th>
<th>LE Index</th>
<th>Edu Index</th>
<th>GDP Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Norway</td>
<td>0.965</td>
<td>0.909</td>
<td>0.993</td>
<td>0.993</td>
</tr>
<tr>
<td>2</td>
<td>Iceland</td>
<td>0.960</td>
<td>0.931</td>
<td>0.981</td>
<td>0.968</td>
</tr>
<tr>
<td>3</td>
<td>Australia</td>
<td>0.957</td>
<td>0.925</td>
<td>0.993</td>
<td>0.954</td>
</tr>
<tr>
<td>4</td>
<td>Ireland</td>
<td>0.956</td>
<td>0.882</td>
<td>0.990</td>
<td>0.995</td>
</tr>
<tr>
<td>5</td>
<td>Sweden</td>
<td>0.951</td>
<td>0.922</td>
<td>0.982</td>
<td>0.949</td>
</tr>
<tr>
<td>6</td>
<td>Canada</td>
<td>0.950</td>
<td>0.919</td>
<td>0.970</td>
<td>0.959</td>
</tr>
<tr>
<td>7</td>
<td>Japan</td>
<td>0.949</td>
<td>0.953</td>
<td>0.945</td>
<td>0.948</td>
</tr>
<tr>
<td>8</td>
<td>United States</td>
<td>0.948</td>
<td>0.875</td>
<td>0.971</td>
<td>0.999</td>
</tr>
<tr>
<td>9</td>
<td>Switzerland</td>
<td>0.947</td>
<td>0.928</td>
<td>0.946</td>
<td>0.968</td>
</tr>
<tr>
<td>10</td>
<td>Netherlands</td>
<td>0.947</td>
<td>0.892</td>
<td>0.987</td>
<td>0.962</td>
</tr>
</tbody>
</table>
HDI: Sensitive to Inequality?

- No!
HDI: Sensitive to Inequality?

- No!
- Three proposals
HDI: Sensitive to Inequality?

- No!
- Three proposals
 - Hicks (1997)
HDI: Sensitive to Inequality?

- No!
- Three proposals
 - Hicks (1997)
 - Foster, López-Calva, Székely (2005)
HDI: Sensitive to Inequality?

- No!
- Three proposals
 - Hicks (1997)
 - Foster, López-Calva, Székely (2005)
 - Harttgen, Klasen, and Misselhorn (2008)
No!

Three proposals

- Hicks (1997)
- Foster, López-Calva, Székely (2005)
- Harttgen, Klasen, and Misselhorn (2008)

Finally, incorporate the concept of inter-dimensional correlation into HDI
No!

Three proposals
- Hicks (1997)
- Foster, López-Calva, Székely (2005)
- Harttgen, Klasen, and Misselhorn (2008)

Finally, incorporate the concept of inter-dimensional correlation into HDI
- Seth (2009)
Table 5. Country rankings by HDI and IAHDI

<table>
<thead>
<tr>
<th>Country</th>
<th>HDI</th>
<th>IAHDI</th>
<th>Change in ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>2</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Korea (Rep.)</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chile</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Venezuela</td>
<td>5</td>
<td>7</td>
<td>-2</td>
</tr>
<tr>
<td>Panama</td>
<td>6</td>
<td>8</td>
<td>-2</td>
</tr>
<tr>
<td>Mexico</td>
<td>7</td>
<td>10</td>
<td>-3</td>
</tr>
<tr>
<td>Colombia</td>
<td>8</td>
<td>9</td>
<td>-1</td>
</tr>
<tr>
<td>Thailand</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Malaysia</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Brazil</td>
<td>11</td>
<td>12</td>
<td>-1</td>
</tr>
<tr>
<td>Peru</td>
<td>12</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>14</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Philippines</td>
<td>15</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Guatemala</td>
<td>17</td>
<td>19</td>
<td>-2</td>
</tr>
<tr>
<td>Honduras</td>
<td>18</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>19</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>State</td>
<td>HDI-GM</td>
<td>Ranking</td>
<td>HDI-GM</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Aguascalientes</td>
<td>0.7001</td>
<td>5</td>
<td>0.5811</td>
</tr>
<tr>
<td>Baja California</td>
<td>0.7176</td>
<td>2</td>
<td>0.6150</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>0.7038</td>
<td>3</td>
<td>0.5787</td>
</tr>
<tr>
<td>Campeche</td>
<td>0.6734</td>
<td>15</td>
<td>0.5473</td>
</tr>
<tr>
<td>Chiapas</td>
<td>0.5735</td>
<td>32</td>
<td>0.3797</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>0.6739</td>
<td>14</td>
<td>0.5069</td>
</tr>
<tr>
<td>Coahuila</td>
<td>0.6957</td>
<td>6</td>
<td>0.5637</td>
</tr>
<tr>
<td>Colima</td>
<td>0.6884</td>
<td>7</td>
<td>0.5428</td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>0.7403</td>
<td>1</td>
<td>0.6376</td>
</tr>
<tr>
<td>Durango</td>
<td>0.6608</td>
<td>20</td>
<td>0.4708</td>
</tr>
<tr>
<td>Estado de México</td>
<td>0.6824</td>
<td>9</td>
<td>0.5185</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>0.6546</td>
<td>22</td>
<td>0.4937</td>
</tr>
<tr>
<td>Guerrero</td>
<td>0.5968</td>
<td>30</td>
<td>0.3995</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>0.6449</td>
<td>24</td>
<td>0.4784</td>
</tr>
<tr>
<td>Jalisco</td>
<td>0.6772</td>
<td>12</td>
<td>0.5246</td>
</tr>
<tr>
<td>Michoacán</td>
<td>0.6363</td>
<td>26</td>
<td>0.4509</td>
</tr>
<tr>
<td>Morelos</td>
<td>0.6691</td>
<td>16</td>
<td>0.5139</td>
</tr>
<tr>
<td>Nayarit</td>
<td>0.6638</td>
<td>18</td>
<td>0.4898</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>0.7021</td>
<td>4</td>
<td>0.5783</td>
</tr>
</tbody>
</table>
We follow the approach of Foster, López-Calva, Székely (2005)
Normalizing Dimensions at the Individual Level

- We follow the approach of Foster, López-Calva, Székely (2005)
- They do not aggregate first across observations and then normalize (like the traditional HDI)
Normalizing Dimensions at the Individual Level

- We follow the approach of Foster, López-Calva, Székely (2005)
- They do not aggregate first across observations and then normalize (like the traditional HDI)
- Rather, first normalizes and then aggregates
Normalizing Dimensions at the Individual Level

- We follow the approach of Foster, López-Calva, Székely (2005)
- They do not aggregate first across observations and then normalize (like the traditional HDI)
- Rather, first normalizes and then aggregates
 - Income varies across individuals
Normalizing Dimensions at the Individual Level

- We follow the approach of Foster, López-Calva, Székely (2005)
- They do not aggregate first across observations and then normalize (like the traditional HDI)
- Rather, first normalizes and then aggregates
 - Income varies across individuals
 - Enrolment rates and literacy rates varies across households
Normalizing Dimensions at the Individual Level

- We follow the approach of Foster, López-Calva, Székely (2005)
- They do not aggregate first across observations and then normalize (like the traditional HDI)
- Rather, first normalizes and then aggregates
 - Income varies across individuals
 - Enrolment rates and literacy rates varies across households
 - Infant survival rate (health variable) varies across municipalities
Basic Theoretical Framework

- N persons and D dimensions

Normalized achievement vector: $X = x_1 \times x_2 \times \ldots \times x_N$ where x_{nd} is the achievement of the nth person in the dth dimension.

Denote: $x_n = (x_{n1}, \ldots, x_{nD})$ and $x_d = (x_{1d}, \ldots, x_{Nd})$.

x_n is the achievement vector of the nth person.

x_d is the achievement vector in the dth dimension.

A Human Development Index is $W(H) : H \rightarrow [0, \infty)$.
Basic Theoretical Framework

- N persons and D dimensions

- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$
Basic Theoretical Framework

- N persons and D dimensions

- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$

- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
Basic Theoretical Framework

- N persons and D dimensions
- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$
- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
- $x_{nd} > 0 \ \forall n, d$
N persons and D dimensions

Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$

x_{nd} is the achievement of the n^{th} person in the d^{th} dimension

$x_{nd} > 0 \ \forall n, d$

Denote: $x_{n}^{*} = (x_{n1}, \ldots, x_{nD}) \forall n$ and $x_{d}^{*} = (x_{1d}, \ldots, x_{Nd}) \forall d$
Basic Theoretical Framework

- N persons and D dimensions

- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$

- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension

- $x_{nd} > 0 \ \forall n, d$

- Denote: $x_{n^*} = (x_{n1}, \ldots, x_{nD}) \ \forall n$ and $x_{d^*} = (x_{1d}, \ldots, x_{Nd}) \ \forall d$

- x_{n^*} is the achievement vector of the n^{th} person
Basic Theoretical Framework

- N persons and D dimensions

- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$

- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension

- $x_{nd} > 0 \ \forall n, d$

- Denote: $x_{n^*} = (x_{n1}, \ldots, x_{nD}) \ \forall n$ and $x_{d^*} = (x_{1d}, \ldots, x_{Nd}) \ \forall d$

- x_{n^*} is the achievement vector of the n^{th} person

- x_{d^*} is the achievement vector in the d^{th} dimension
Basic Theoretical Framework

- N persons and D dimensions
- Normalized achievement vector: $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$
- x_{nd} is the achievement of the n^{th} person in the d^{th} dimension
- $x_{nd} > 0 \quad \forall n, d$
- Denote: $x_{n^*} = (x_{n1}, \ldots, x_{nD}) \forall n$ and $x_{d^*} = (x_{1d}, \ldots, x_{Nd}) \forall d$
- x_{n^*} is the achievement vector of the n^{th} person
- x_{d^*} is the achievement vector in the d^{th} dimension
- A Human Development Index is $W(H) : H \rightarrow [0, \infty]$
For a vector $\mathbf{h} = (h_1, ..., h_M)$, Generalized mean of order γ is

$$\mu_\gamma(\mathbf{h}) = \frac{h_1^\gamma + ... + h_M^\gamma}{\gamma M}$$

for $\gamma \neq 0$ and

$$\mu_0(\mathbf{h}) = \left(\frac{h_1 + ... + h_M}{M}\right)^{1/M}$$

for $\gamma = 0$.

If $\gamma = 1$, then

$$\mu_1(\mathbf{h}) = \frac{h_1 + ... + h_M}{M}$$

is the Arithmetic Mean.

If $\gamma = \infty$, then

$$\mu_\infty(\mathbf{h}) = \min(h_1, ..., h_M)$$

is the Harmonic Mean.

As γ falls, more emphasis is given on lower values.

If $\gamma = \infty$, then

$$\mu_\infty(\mathbf{h}) = \max(h_1, ..., h_M)$$

is the Harmonic Mean.

As γ rises, more emphasis is given on higher values.
For a vector $\mathbf{h} = (h_1, ..., h_M)$, Generalized mean of order γ is

- $\mu_\gamma (\mathbf{h}) = \left[\frac{1}{M} (h_1^\gamma + ... + h_M^\gamma) \right]^{1/\gamma}$ for $\gamma \neq 0$ and
- $\mu_\gamma (\mathbf{h}) = (h_1 \times ... \times h_M)^{1/M}$ for $\gamma = 0$
For a vector $\mathbf{h} = (h_1, ..., h_M)$, Generalized mean of order γ is

- $\mu_\gamma (\mathbf{h}) = \left[\frac{1}{M} (h_1^\gamma + ... + h_M^\gamma) \right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_\gamma (\mathbf{h}) = (h_1 \times ... \times h_M)^{1/M}$ for $\gamma = 0$
- If $\gamma = 1$, then $\mu_1 (\mathbf{h}) = \frac{h_1 + ... + h_M}{M} \rightarrow$ Arithmetic Mean
For a vector \(\mathbf{h} = (h_1, \ldots, h_M) \), Generalized mean of order \(\gamma \) is

- \(\mu_{\gamma}(\mathbf{h}) = \left[\frac{1}{M} (h_1^\gamma + \ldots + h_M^\gamma) \right]^{1/\gamma} \) for \(\gamma \neq 0 \) and
 \[\mu_{\gamma}(\mathbf{h}) = (h_1 \times \ldots \times h_M)^{1/M} \] for \(\gamma = 0 \)

- If \(\gamma = 1 \), then \(\mu_1(\mathbf{h}) = \frac{h_1 + \ldots + h_M}{M} \rightarrow \text{Arithmetic Mean} \)

- If \(\gamma = 0 \), then \(\mu_0(\mathbf{h}) = (h_1 \times \ldots \times h_M)^{1/M} \rightarrow \text{Geometric Mean} \)
For a vector \(h = (h_1, ..., h_M) \), Generalized mean of order \(\gamma \) is

- \(\mu_\gamma (h) = \left[\frac{1}{M} (h_1^\gamma + ... + h_M^\gamma) \right]^{1/\gamma} \) for \(\gamma \neq 0 \) and
 \[\mu_\gamma (h) = (h_1 \times ... \times h_M)^{1/M} \] for \(\gamma = 0 \)
- If \(\gamma = 1 \), then \(\mu_1 (h) = \frac{h_1 + ... + h_M}{M} \to \text{Arithmetic Mean} \)
- If \(\gamma = 0 \), then \(\mu_0 (h) = (h_1 \times ... \times h_M)^{1/M} \to \text{Geometric Mean} \)
- If \(\gamma = -1 \), then \(\mu_{-1} (h) = \frac{M}{h_1^{-1} + ... + h_M^{-1}} \to \text{Harmonic Mean} \)
For a vector $\mathbf{h} = (h_1, ..., h_M)$, Generalized mean of order γ is

- $\mu_\gamma(\mathbf{h}) = \left[\frac{1}{M} (h_1^\gamma + ... + h_M^\gamma) \right]^{1/\gamma}$ for $\gamma \neq 0$ and $\mu_\gamma(\mathbf{h}) = (h_1 \times ... \times h_M)^{1/M}$ for $\gamma = 0$
- If $\gamma = 1$, then $\mu_1(\mathbf{h}) = \frac{h_1 + ... + h_M}{M}$ → Arithmetic Mean
- If $\gamma = 0$, then $\mu_0(\mathbf{h}) = (h_1 \times ... \times h_M)^{1/M}$ → Geometric Mean
- If $\gamma = -1$, then $\mu_{-1}(\mathbf{h}) = \frac{M}{\frac{1}{h_1} + ... + \frac{1}{h_M}}$ → Harmonic Mean

As γ falls, more emphasis is given on lower values
For a vector $\mathbf{h} = (h_1, ..., h_M)$, Generalized mean of order γ is

- $\mu_\gamma(\mathbf{h}) = \left[\frac{1}{M} (h_1^\gamma + ... + h_M^\gamma) \right]^{1/\gamma}$ for $\gamma \neq 0$ and
- $\mu_\gamma(\mathbf{h}) = (h_1 \times ... \times h_M)^{1/M}$ for $\gamma = 0$

- If $\gamma = 1$, then $\mu_1(\mathbf{h}) = \frac{h_1 + ... + h_M}{M} \rightarrow \text{Arithmetic Mean}$
- If $\gamma = 0$, then $\mu_0(\mathbf{h}) = (h_1 \times ... \times h_M)^{1/M} \rightarrow \text{Geometric Mean}$
- If $\gamma = -1$, then $\mu_{-1}(\mathbf{h}) = \frac{M}{h_1^{-1} + ... + h_M^{-1}} \rightarrow \text{Harmonic Mean}$

- As γ falls, more emphasis is given on lower values

- If $\gamma = -\infty$, then $\mu_{-\infty}(\mathbf{h}) = \min (h_1, ..., h_M)$
For a vector \(h = (h_1, \ldots, h_M) \), Generalized mean of order \(\gamma \) is

\[
\mu_\gamma (h) = \left[\frac{1}{M} (h_1^\gamma + \ldots + h_M^\gamma) \right]^{1/\gamma} \quad \text{for } \gamma \neq 0 \quad \text{and}
\]
\[
\mu_\gamma (h) = (h_1 \times \ldots \times h_M)^{1/M} \quad \text{for } \gamma = 0
\]

- If \(\gamma = 1 \), then \(\mu_1 (h) = \frac{h_1 + \ldots + h_M}{M} \rightarrow \text{Arithmetic Mean} \)
- If \(\gamma = 0 \), then \(\mu_0 (h) = (h_1 \times \ldots \times h_M)^{1/M} \rightarrow \text{Geometric Mean} \)
- If \(\gamma = -1 \), then \(\mu_{-1} (h) = \frac{M}{h_1^{-1} + \ldots + h_M^{-1}} \rightarrow \text{Harmonic Mean} \)

As \(\gamma \) falls, more emphasis is given on lower values
- If \(\gamma = -\infty \), then \(\mu_{-\infty} (h) = \min (h_1, \ldots, h_M) \)

As \(\gamma \) rises, more emphasis is given on higher values
For a vector $\mathbf{h} = (h_1, \ldots, h_M)$, Generalized mean of order γ is

$$
\mu_\gamma (\mathbf{h}) = \left[\frac{1}{M} (h_1^\gamma + \ldots + h_M^\gamma) \right]^{1/\gamma} \quad \text{for } \gamma \neq 0 \text{ and }
\mu_\gamma (\mathbf{h}) = (h_1 \times \ldots \times h_M)^{1/M} \quad \text{for } \gamma = 0
$$

- If $\gamma = 1$, then $\mu_1 (\mathbf{h}) = \frac{h_1 + \ldots + h_M}{M} \rightarrow$ Arithmetic Mean
- If $\gamma = 0$, then $\mu_0 (\mathbf{h}) = (h_1 \times \ldots \times h_M)^{1/M} \rightarrow$ Geometric Mean
- If $\gamma = -1$, then $\mu_{-1} (\mathbf{h}) = \frac{M}{h_1^{-1} + \ldots + h_M^{-1}} \rightarrow$ Harmonic Mean

As γ falls, more emphasis is given on lower values

- If $\gamma = -\infty$, then $\mu_{-\infty} (\mathbf{h}) = \min (h_1, \ldots, h_M)$

As γ rises, more emphasis is given on higher values

- If $\gamma = \infty$, then $\mu_{\infty} (\mathbf{h}) = \max (h_1, \ldots, h_M)$
Basic Axioms Satisfied by the HDI

- Normalization (NORM). If \(x_{nd} = \delta \) for all \(n, d \), then \(W(X) = \delta \)
Basic Axioms Satisfied by the HDI

- Normalization (NORM). If $x_{nd} = \delta$ for all n, d, then $W(X) = \delta$
- Linear Homogeneity (LHOM). If $X' = \zeta X$ then $W(X') = \zeta W(X)$ for $\zeta > 0$
Basic Axioms Satisfied by the HDI

- Normalization (NORM). If $x_{nd} = \delta$ for all n, d, then $W(X) = \delta$
- Linear Homogeneity (LHOM). if $X' = \zeta X$ then $W(X') = \zeta W(X)$ for $\zeta > 0$
- Anonymity (ANON). Personal identity does not matter
Basic Axioms Satisfied by the HDI

- Normalization (NORM). If \(x_{nd} = \delta \) for all \(n, d \), then \(W(X) = \delta \)
- Linear Homogeneity (LHOM). if \(X' = \zeta X \) then \(W(X') = \zeta W(X) \) for \(\zeta > 0 \)
- Anonymity (ANON). Personal identity does not matter
- Monotonicity (MON). \(W(X) \) is non-decreasing in \(x_{nd} \) for all \(n, d \).
Basic Axioms Satisfied by the HDI

- **Normalization (NORM).** If $x_{nd} = \delta$ for all n, d, then $W(X) = \delta$
- **Linear Homogeneity (LHOM).** If $X' = \zeta X$ then $W(X') = \zeta W(X)$ for $\zeta > 0$
- **Anonymity (ANON).** Personal identity does not matter
- **Monotonicity (MON).** $W(X)$ is non-decreasing in x_{nd} for all n, d.
- **Population Replication Invariance (POPRI).** Replication of the same population several times does not change overall human development.
Basic Axioms Satisfied by the HDI

- Normalization (NORM). If $x_{nd} = \delta$ for all n, d, then $W(X) = \delta$
- Linear Homogeneity (LHOM). If $X' = \zeta X$ then $W(X') = \zeta W(X)$ for $\zeta > 0$
- Anonymity (ANON). Personal identity does not matter
- Monotonicity (MON). $W(X)$ is non-decreasing in x_{nd} for all n, d.
- Population Replication Invariance (POPRI). Replication of the same population several times does not change overall human development.
- Subgroup Consistency (SUBCON). If the human development of one subgroup rises and the other is unaltered, then overall human development rise
Basic Axioms Satisfied by the HDI

- **Normalization (NORM).** If $x_{nd} = \delta$ for all n, d, then $W(X) = \delta$
- **Linear Homogeneity (LHOM).** If $X' = \zeta X$ then $W(X') = \zeta W(X)$ for $\zeta > 0$
- **Anonymity (ANON).** Personal identity does not matter
- **Monotonicity (MON).** $W(X)$ is non-decreasing in x_{nd} for all n, d.
- **Population Replication Invariance (POPRI).** Replication of the same population several times does not change overall human development.
- **Subgroup Consistency (SUBCON).** If the human development of one subgroup rises and the other is unaltered, then overall human development rise
- **Continuity (CONT).** $W(H)$ does not change abruptly due to a change in any of the elements in H
HDI: The Traditional Approach (W_A)

- The simple average of the whole matrix H
HDI: The Traditional Approach (W_A)

- The simple average of the whole matrix H
 - First stage: simple average across persons. Second stage: simple average across dimensions
HDI: The Traditional Approach (W_A)

- The simple average of the whole matrix H
 1. First stage: simple average across persons. Second stage: simple average across dimensions
 2. First stage: simple average across dimensions. Second stage: simple average across persons

Example: 3 persons and 3 dimensions

\[
\begin{array}{ccc}
\text{Income} & \text{Education} & \text{Health} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

First stage: average across persons yields $(0.5, 0.5, 0.5)$. Second stage: average across dimensions yields 0.5. Thus, $W_A = 0.5$.

Both sequences of aggregation yield the same result.

Path Independence (PATHIN) - sequence of aggregation is not important (Foster, López-Calva, Székely (2005))
HDI: The Traditional Approach (WA)

- The simple average of the whole matrix \(H \)

 1. First stage: simple average across persons. Second stage: simple average across dimensions
 2. First stage: simple average across dimensions. Second stage: simple average across persons

- Example: 3 persons and 3 dimensions
HDI: The Traditional Approach \((W_A)\)

- The simple average of the whole matrix \(H\)
 - First stage: simple average across persons. Second stage: simple average across dimensions
 - First stage: simple average across dimensions. Second stage: simple average across persons

- Example: 3 persons and 3 dimensions

\[
H = \begin{bmatrix}
\text{Income} & \text{Education} & \text{Health} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4
\end{bmatrix}
\]
HDI: The Traditional Approach (W_A)

- The simple average of the whole matrix H
 1. First stage: simple average across persons. Second stage: simple average across dimensions
 2. First stage: simple average across dimensions. Second stage: simple average across persons

- Example: 3 persons and 3 dimensions

\[
H = \begin{bmatrix}
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4
\end{bmatrix}
\]

1. First stage: average across persons yields (0.5, 0.5, 0.5). Second stage: average across dimensions yields 0.5. Thus, $W_A = 0.5$
HDI: The Traditional Approach (W_A)

- The simple average of the whole matrix H
 1. First stage: simple average across persons. Second stage: simple average across dimensions
 2. First stage: simple average across dimensions. Second stage: simple average across persons

- Example: 3 persons and 3 dimensions

$$H = \begin{bmatrix}
\text{Income} & \text{Education} & \text{Health} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{bmatrix}$$

1. First stage: average across persons yields (0.5, 0.5, 0.5). Second stage: average across dimensions yields 0.5. Thus, $W_A = 0.5$
2. First stage: average across dimensions yields (0.63, 0.5, 0.37). Second stage: average across persons yields 0.5. Thus, $W_A = 0.5$
HDI: The Traditional Approach (W_A)

- The simple average of the whole matrix H
 1. First stage: simple average across persons. Second stage: simple average across dimensions
 2. First stage: simple average across dimensions. Second stage: simple average across persons

- Example: 3 persons and 3 dimensions

$$H = \begin{bmatrix} \text{Income} & \text{Education} & \text{Health} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{bmatrix}$$

 1. First stage: average across persons yields $(0.5, 0.5, 0.5)$. Second stage: average across dimensions yields 0.5. Thus, $W_A = 0.5$
 2. First stage: average across dimensions yields $(0.63, 0.5, 0.37)$. Second stage: average across persons yields 0.5. Thus, $W_A = 0.5$

- Both sequences of aggregation yield the same result. **Path Independence** (PATHIN) - *sequence of aggregation is not important* (Foster, López-Calva, Székely (2005))
Policy Exercise

- Given achievement matrix

Given achievement matrix

\[X = \begin{bmatrix}
\text{Income} & 0.8 & 0.8 & 0.3 \\
\text{Education} & 0.4 & 0.3 & 0.8 \\
\text{Health} & 0.3 & 0.4 & 0.4
\end{bmatrix} \]

Policy maker's budget - one indivisible unit of assistance

Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer. Let human development be calculated by applying \(W \).

Question: Where should the assistance be made?

Answer: Anywhere in the matrix. Insensitive to inequality.

Evaluation of \(W \): \(W \) satisfies NORM, LHOM, ANON, MON, POPRI, SUBCON, CONT, PATHIN

\(W \) is not sensitive to inequality across persons.

Suman Seth (Vanderbilt University & OPHI)

Inequality Adjusted HDI

3rd September, 2009
Policy Exercise

Given achievement matrix

\[X = \]

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Education</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Person 2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Person 3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer. Let human development be calculated by applying \(W \).

Question: Where should the assistance be made?

Answer: Anywhere in the matrix. Insensitive to inequality.
Policy Exercise

- Given achievement matrix

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Education</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Person 2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Person 3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Policy maker’s budget - one indivisible unit of assistance
Policy Exercise

- Given achievement matrix

\[
X = \begin{array}{ccc}
\text{Income} & \text{Education} & \text{Health} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

- Policy maker’s budget - one indivisible unit of assistance
- Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer
Policy Exercise

- Given achievement matrix

\[
\begin{array}{ccc}
\text{Income} & \text{Education} & \text{Health} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

- Policy maker’s budget - one indivisible unit of assistance
- Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer
- Let human development be calculated by applying \(W_A\)

Question:

Answer: Anywhere in the matrix. Insensitive to inequality.
Policy Exercise

Given achievement matrix

\[
X = \begin{bmatrix}
\text{Income} & \text{Education} & \text{Health} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{bmatrix}
\]

Policy maker’s budget - one indivisible unit of assistance

Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer

Let human development be calculated by applying \(W_A \)

Question: Where should the assistance be made?
Given achievement matrix

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Education</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Person 2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Person 3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Policy maker’s budget - one indivisible unit of assistance

Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer

Let human development be calculated by applying W_A

Question: Where should the assistance be made?

Answer: Anywhere in the matrix. Insensitive to inequality
Given achievement matrix

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Education</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Person 2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Person 3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Policy maker’s budget - one indivisible unit of assistance
Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer
Let human development be calculated by applying W_A

Question: Where should the assistance be made?
Answer: Anywhere in the matrix. Insensitive to inequality

Evaluation of W_A
Policy Exercise

- Given achievement matrix

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Education</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Person 2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Person 3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Policy maker’s budget - one indivisible unit of assistance
- Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer
- Let human development be calculated by applying W_A

- Question: Where should the assistance be made?
 - Answer: Anywhere in the matrix. Insensitive to inequality

- Evaluation of W_A
 - W_A satisfies NORM, LHOM, ANON, MON, POPRI, SUBCON, CONT, PATHIN
Policy Exercise

- Given achievement matrix

 \[
 \begin{array}{|c|c|c|}
 \hline
 & \text{Income} & \text{Education} & \text{Health} \\
 \hline
 \text{Person 1} & 0.8 & 0.8 & 0.3 \\
 \text{Person 2} & 0.4 & 0.3 & 0.8 \\
 \text{Person 3} & 0.3 & 0.4 & 0.4 \\
 \hline
 \end{array}
 \]

- Policy maker’s budget - one indivisible unit of assistance
- Suppose the assistance increases achievement in any dimension by 0.1 units and the policy maker is a human development maximizer
- Let human development be calculated by applying \(W_A \)

Question: Where should the assistance be made?
- Answer: Anywhere in the matrix. Insensitive to inequality

Evaluation of \(W_A \)
- \(W_A \) satisfies NORM, LHOM, ANON, MON, POPRI, SUBCON, CONT, PATHIN
- \(W_A \) is not sensitive to inequality across persons
Two Forms of Multidimensional Inequality

- The **first**: distribution sensitive inequality (Kolm 1977)

Decrease in the spread of the distribution increases human development.

Uniform Majorization (UM): $W(BX) > W(X)$

B is a bistochastic matrix.

Remember: This is a variation of Uniform Pigou Dalton Transfer.

What does transfer imply for non-transferable dimensions such as income and health?

The other form of inequality will be introduced later.
Two Forms of Multidimensional Inequality

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases human development

Remember: This is a variation of Uniform Pigou Dalton Transfer

What does transfer imply for non-transferable dimensions such as income and health?

The other form of inequality will be introduced later.
Two Forms of Multidimensional Inequality

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases human development
 - **Uniform Majorization** (UM): $W(BX) > W(X)$
Two Forms of Multidimensional Inequality

- **The first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases human development
 - **Uniform Majorization** (UM): \(W(BX) > W(X) \)
 - \(B \) is a bistochastic matrix
Two Forms of Multidimensional Inequality

- **The first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases human development
 - **Uniform Majorization** (UM): $W(BX) > W(X)$
 - B is a bistochastic matrix
- Remember: This is a variation of **Uniform Pigou Dalton Transfer**
Two Forms of Multidimensional Inequality

- **The first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases human development
 - **Uniform Majorization** (UM): \(W(BX) > W(X) \)
 - \(B \) is a bistochastic matrix

- Remember: This is a variation of **Uniform Pigou Dalton Transfer**

- What does transfer imply for non-transferable dimensions such as income and health?
Two Forms of Multidimensional Inequality

- The **first**: distribution sensitive inequality (Kolm 1977)
 - Decrease in the spread of the distribution increases human development
 - **Uniform Majorization** (UM): $W(BX) > W(X)$
 - B is a bistochastic matrix

- Remember: This is a variation of **Uniform Pigou Dalton Transfer**

- What does transfer imply for non-transferable dimensions such as income and health?

- The other form of inequality will be introduced later
Indices Sensitive to Inequality

- Indices sensitive to the first form of inequality across persons

\[S = \mu(1) \left[1 - G(\mu) \right] \]

First stage: aggregates across persons by using Sen welfare standard

Second stage: uses simple average across dimensions

Example: \(X = 2 \quad 4 \quad 0 \quad 8 \quad 0 \quad 8 \quad 3 \quad 0 \quad 4 \quad 0 \quad 8 \quad 3 \quad 4 \quad 3 \quad 5 \)
Indices Sensitive to Inequality

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)

Example: $X = [2.40, 0.80, 0.30, 0.40, 0.8]$.

The first stage average across persons yields $(0.50, 0.50, 0.50)$. The Gini vector is $(0.22, 0.22, 0.22)$. The first stage achievement vector is $(0.39, 0.39, 0.39)$.

The second stage average yields $\bar{\mu}(0.39, 0.39, 0.39) = 0.39$.
Indices Sensitive to Inequality

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard $S (\cdot) = \mu_1 (\cdot) [1 - G (\cdot)]$. Second stage: uses simple average across dimensions $\mu_1 (\cdot)$

Example: $X = \begin{pmatrix} 0.5 & 0.5 & 0.5 \\ 0.4 & 0.4 & 0.4 \\ 0.3 & 0.3 & 0.3 \end{pmatrix}$. The first stage average across persons yields $(0.5, 0.5, 0.5)$. The Gini vector is $(0.22, 0.22, 0.22)$. The first stage achievement vector is $(0.39, 0.39, 0.39)$. The second stage average yields $\mu_1 (0.39, 0.39, 0.39) = 0.39$.
Indices Sensitive to Inequality

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard $S(\cdot) = \mu_1(\cdot) [1 - G(\cdot)]$. Second stage: uses simple average across dimensions $\mu_1(\cdot)$
 - Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$
Indices Sensitive to Inequality

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard
 \[S(\cdot) = \mu_1(\cdot)[1 - G(\cdot)] \]
 - Second stage: uses simple average across dimensions $\mu_1(\cdot)$
 - Example:
 \[X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix} \]
 - The first stage average across persons yields $(0.5, 0.5, 0.5)$. The Gini vector is $(0.22, 0.22, 0.22)$. The first stage achievement vector is $(0.39, 0.39, 0.39)$.

Suman Seth (Vanderbilt University & OPHI)
Inequality Adjusted HDI
3rd September, 2009 17 / 30
Indices Sensitive to Inequality

- Indices sensitive to the first form of inequality across persons
 - Hicks (1997) Index (W_H)
 - First stage: aggregates across persons by using Sen welfare standard
 \[S(\cdot) = \mu_1(\cdot)[1 - G(\cdot)]. \]
 Second stage: uses simple average across dimensions $\mu_1(\cdot)$
 - Example: \[X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix} \]
 - The first stage average across persons yields $(0.5, 0.5, 0.5)$. The Gini vector is $(0.22, 0.22, 0.22)$. The first stage achievement vector is $(0.39, 0.39, 0.39)$.
 - The second stage average yields \[\mu_1(0.39, 0.39, 0.39) = 0.39. \]
Indices Sensitive to Inequality Across Persons

Example: \(\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \)
Example: $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$

- The first stage average across persons yields $(0.5, 0.5, 0.5)$. The Gini vector is $(0.2, 0.2, 0.13)$. The first stage achievement vector is $(0.4, 0.4, 0.42)$.

Indices Sensitive to Inequality Across Persons
Example: $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$

- The first stage average across persons yields (0.5, 0.5, 0.5). The Gini vector is (0.2, 0.2, 0.13). The first stage achievement vector is (0.4, 0.4, 0.42).
- The second stage average yields - $\mu_1 (0.4, 0.4, 0.42) = 0.41$.

Example: \(\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \)

- The first stage average across persons yields \((0.5, 0.5, 0.5)\). The Gini vector is \((0.2, 0.2, 0.13)\). The first stage achievement vector is \((0.4, 0.4, 0.42)\).
- The second stage average yields - \(\mu_1 (0.4, 0.4, 0.42) = 0.41 \).
- Thus, \(W_H (X) = 0.39 \) and \(W_H (\bar{X}) = 0.41 \).
Example: \(\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \)

- The first stage **average** across persons yields \((0.5, 0.5, 0.5)\). The Gini vector is \((0.2, 0.2, 0.13)\). The first stage achievement vector is \((0.4, 0.4, 0.42)\).
- The second stage average yields \(-\mu_1 (0.4, 0.4, 0.42) = 0.41.\)
- Thus, \(W_H (X) = 0.39\) and \(W_H (\bar{X}) = 0.41\)
- Gini Index - not subgroup consistent
Example: $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$

- The first stage average across persons yields $(0.5, 0.5, 0.5)$. The Gini vector is $(0.2, 0.2, 0.13)$. The first stage achievement vector is $(0.4, 0.4, 0.42)$.
- The second stage average yields $\mu_1 (0.4, 0.4, 0.42) = 0.41$.
- Thus, $W_H (X) = 0.39$ and $W_H (\bar{X}) = 0.41$
- Gini Index - not subgroup consistent
- Hicks Index satisfies NORM, LHOM, ANON, MON, POPRI, CONT, UM but not SUBCON, PATHIN
Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index \((W_F)\)
Foster, López-Calva, Székely (2005) Index (W_F)

- First stage: aggregates across persons using $\mu_\alpha(\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha(\cdot)$; and vice versa. $\alpha \leq 1$
Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index \((W_F)\)
 - First stage: aggregates across persons using \(\mu_\alpha(\cdot)\). Second stage: aggregates across dimensions using \(\mu_\alpha(\cdot)\); and vice versa. \(\alpha \leq 1\)
 - The same power of generalized mean \(\rightarrow\) the \(W_F\) satisfies path independence (PI)
Foster, López-Calva, Székely (2005) Index (W_F)

- First stage: aggregates across persons using $\mu_\alpha (\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha (\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean $
ightarrow$ the W_F satisfies path independence (PI)

Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$
Foster, López-Calva, Székely (2005) Index (W_F)

- First stage: aggregates across persons using $\mu_\alpha (\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha (\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean \(\rightarrow \) the W_F satisfies path independence (PI)

Example: \(X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix} \)

First Stage: Generalized mean across persons yields $0.4, 0.4, 0.4$.
Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_\alpha (\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha (\cdot)$; and vice versa. $\alpha \leq 1$
 - The same power of generalized mean \rightarrow the W_F satisfies path independence (PI)

 $$X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$$

- Example: First Stage: Generalized mean across persons yields $(0.4, 0.4, 0.4)$.
- The second stage **generalized mean** of order -2 yields $\mu_{-2} (0.4, 0.4, 0.4) = 0.4$.
Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_\alpha (\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha (\cdot)$; and vice versa. $\alpha \leq 1$
 - The same power of generalized mean \rightarrow the W_F satisfies path independence (PI)

- Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$

- First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).
- The second stage **generalized mean** of order -2 yields $-\mu_{-2} (0.4, 0.4, 0.4) = 0.4$.
- Reversed order of aggregation
Indices Sensitive to Inequality Across Persons

- Foster, López-Calva, Székely (2005) Index (W_F)
 - First stage: aggregates across persons using $\mu_\alpha (\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha (\cdot)$; and vice versa. $\alpha \leq 1$
 - The same power of generalized mean \rightarrow the W_F satisfies path independence (PI)

Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$

- First Stage: Generalized mean across persons yields $(0.4, 0.4, 0.4)$.
- The second stage **generalized mean** of order -2 yields - $\mu_{-2} (0.4, 0.4, 0.4) = 0.4$.
- Reversed order of aggregation
 - The first stage yields - $(0.46, 0.4, 0.36)$ and the second stage yields - $W_F = 0.4$.
Foster, López-Calva, Székely (2005) Index (W_F)
- First stage: aggregates across persons using $\mu_\alpha (\cdot)$. Second stage: aggregates across dimensions using $\mu_\alpha (\cdot)$; and vice versa. $\alpha \leq 1$
- The same power of generalized mean → the W_F satisfies path independence (PI)

Example: $X = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.4 & 0.3 & 0.8 \\ 0.3 & 0.4 & 0.4 \end{bmatrix}$

First Stage: Generalized mean across persons yields (0.4, 0.4, 0.4).
- The second stage generalized mean of order -2 yields - $\mu_{-2} (0.4, 0.4, 0.4) = 0.4$.
- Reversed order of aggregation
 - The first stage yields - (0.46, 0.4, 0.36) and the second stage yields - $W_F = 0.4$.
- The order of aggregation does not matter.
Example: $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$
Example: $\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix}$

First Stage: Generalized mean across persons yields $(0.41, 0.41, 0.42)$. Therefore, both W_F and W_H are sensitive to inequality across persons.
Indices Sensitive to Inequality Across Persons

- Example: \(\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \)

- First Stage: Generalized mean across persons yields \((0.41, 0.41, 0.42)\).

- The second stage **generalized mean** or order \(-2\) yields -
 \[\mu_{-2}(0.4, 0.4, 0.4) = 0.41. \]
Indices Sensitive to Inequality Across Persons

- Example: \(\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \)

- First Stage: Generalized mean across persons yields \((0.41, 0.41, 0.42)\).

- The second stage *generalized mean* or order \(-2\) yields -
 \[\mu_{-2}(0.4, 0.4, 0.4) = 0.41. \]

- Thus, \(W_F(X) = 0.40 \) and \(W_F(\bar{X}) = 0.41 \)
Indices Sensitive to Inequality Across Persons

Example: \[\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \]

First Stage: Generalized mean across persons yields \((0.41, 0.41, 0.42)\).

The second stage \textit{generalized mean} or order \(-2\) yields -
\[\mu_{-2}(0.4, 0.4, 0.4) = 0.41. \]

Thus, \(W_F(X) = 0.40\) and \(W_F(\bar{X}) = 0.41\)

Foster et. al. index satisfies NORM, LHOM, ANON, MON, POPRI, CONT, SUBCON, PATHIN, and UM
Indices Sensitive to Inequality Across Persons

Example: \(\bar{X} = \begin{bmatrix} 0.8 & 0.8 & 0.3 \\ 0.35 & 0.35 & 0.6 \\ 0.35 & 0.35 & 0.6 \end{bmatrix} \)

First Stage: Generalized mean across persons yields \((0.41, 0.41, 0.42)\).

The second stage \textit{generalized mean} or order \(-2\) yields -
\[\mu_{-2}(0.4, 0.4, 0.4) = 0.41. \]

Thus, \(W_F(X) = 0.40 \) and \(W_F(\bar{X}) = 0.41 \)

Foster et. al. index satisfies NORM, LHOM, ANON, MON, POPRI, CONT, SUBCON, PATHIN, and UM

Therefore, both \(W_H \) and \(W_F \) are sensitive to inequality across persons
Motivation
Group-Based HDI

- Motivation
 - Individual/household level data are not always available
Motivation

- Individual/household level data are not always available
- Individual/household level data can not be calculated for every variable
Motivation

- Individual/household level data are not always available
- Individual/household level data cannot be calculated for every variable
 - e.g., life expectancy, enrolment rate etc.
Motivation

- Individual/household level data are not always available
- Individual/household level data can not be calculated for every variable
 - e.g., life expectancy, enrolment rate etc.
- Generalized means could be difficult to understand and interpret
Group-Based HDI

- **Motivation**
 - Individual/household level data are not always available
 - Individual/household level data can not be calculated for every variable
 - e.g., life expectancy, enrolment rate etc.
 - Generalized means could be difficult to understand and interpret
- Harttgen, Klasen, and Misselhorn Index (W_{HKM})
Motivation

- Individual/household level data are not always available
- Individual/household level data can not be calculated for every variable
 - e.g., life expectancy, enrolment rate etc.
- Generalized means could be difficult to understand and interpret

Harttgen, Klasen, and Misselhorn Index (W_{HKM})
- Divide the population by income quintiles
Motivation

- Individual/household level data are not always available
- Individual/household level data can not be calculated for every variable
 - e.g., life expectancy, enrolment rate etc.
- Generalized means could be difficult to understand and interpret

Harttgen, Klasen, and Misselhorn Index (W_{HKM})

- Divide the population by income quintiles
- Calculate the HDI for each quintile
Group-Based HDI - Results

<table>
<thead>
<tr>
<th>Country</th>
<th>$Q = 1$</th>
<th>$Q = 2$</th>
<th>$Q = 3$</th>
<th>$Q = 4$</th>
<th>$Q = 5$</th>
<th>Overall HDI</th>
<th>Ratio Q5/Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrialized countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA (2000)</td>
<td>0.837</td>
<td>0.893</td>
<td>0.927</td>
<td>0.957</td>
<td>1.011</td>
<td>0.940</td>
<td>1.208</td>
</tr>
<tr>
<td>Finland (2002)</td>
<td>0.870</td>
<td>0.897</td>
<td>0.919</td>
<td>0.944</td>
<td>0.989</td>
<td>0.930</td>
<td>1.137</td>
</tr>
<tr>
<td>Developing countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia (2000/2005)</td>
<td>0.637</td>
<td>0.741</td>
<td>0.800</td>
<td>0.857</td>
<td>0.927</td>
<td>0.790</td>
<td>1.377</td>
</tr>
<tr>
<td>Vietnam (2004/2002)</td>
<td>0.627</td>
<td>0.680</td>
<td>0.718</td>
<td>0.765</td>
<td>0.828</td>
<td>0.713</td>
<td>1.321</td>
</tr>
<tr>
<td>Indonesia (2000/2003)</td>
<td>0.593</td>
<td>0.651</td>
<td>0.700</td>
<td>0.764</td>
<td>0.874</td>
<td>0.701</td>
<td>1.474</td>
</tr>
<tr>
<td>South Africa (2000/1998)</td>
<td>0.561</td>
<td>0.640</td>
<td>0.700</td>
<td>0.743</td>
<td>0.879</td>
<td>0.691</td>
<td>1.567</td>
</tr>
<tr>
<td>Bolivia (2002/2003)</td>
<td>0.550</td>
<td>0.640</td>
<td>0.704</td>
<td>0.741</td>
<td>0.863</td>
<td>0.690</td>
<td>1.570</td>
</tr>
<tr>
<td>Nicaragua (2001/2001)</td>
<td>0.531</td>
<td>0.629</td>
<td>0.678</td>
<td>0.720</td>
<td>0.830</td>
<td>0.667</td>
<td>1.563</td>
</tr>
<tr>
<td>Cameroon (2001/2004)</td>
<td>0.417</td>
<td>0.477</td>
<td>0.529</td>
<td>0.553</td>
<td>0.644</td>
<td>0.523</td>
<td>1.544</td>
</tr>
<tr>
<td>Madagascar (2001/1997)</td>
<td>0.343</td>
<td>0.463</td>
<td>0.496</td>
<td>0.563</td>
<td>0.684</td>
<td>0.488</td>
<td>1.994</td>
</tr>
<tr>
<td>Guinea (1995/1999)</td>
<td>0.340</td>
<td>0.457</td>
<td>0.490</td>
<td>0.594</td>
<td>0.696</td>
<td>0.467</td>
<td>2.047</td>
</tr>
<tr>
<td>Côte d’Ivoire (1998/1999)</td>
<td>0.343</td>
<td>0.416</td>
<td>0.434</td>
<td>0.515</td>
<td>0.561</td>
<td>0.430</td>
<td>1.636</td>
</tr>
<tr>
<td>Zambia (2002/2002)</td>
<td>0.317</td>
<td>0.390</td>
<td>0.431</td>
<td>0.476</td>
<td>0.583</td>
<td>0.426</td>
<td>1.839</td>
</tr>
<tr>
<td>Mozambique (2002/2003)</td>
<td>0.305</td>
<td>0.355</td>
<td>0.380</td>
<td>0.417</td>
<td>0.504</td>
<td>0.387</td>
<td>1.652</td>
</tr>
<tr>
<td>Burkina Faso (2003/2003)</td>
<td>0.257</td>
<td>0.306</td>
<td>0.331</td>
<td>0.365</td>
<td>0.489</td>
<td>0.348</td>
<td>1.903</td>
</tr>
</tbody>
</table>
Group-Based HDI - Pros and Cons

- Pros

- Cons
 - Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
 - May not satisfy UM strictly
 - Defends dimensions used in constructing the HDI
 - More and more household level data are available recently

Suman Seth (Vanderbilt University & OPHI)

Inequality Adjusted HDI

3rd September, 2009 23 / 30
Group-Based HDI - Pros and Cons

- Pros
 - Easily applicable

- Cons
 - Similar to Kuznet's ratio. Thus, it does not take into account the entire distribution.
 - May not satisfy UM strictly
 - Defends dimensions used in constructing the HDI
 - More and more household level data are available recently.
Pros

- Easily applicable
- Easily comprehensible

Cons

- Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
- May not satisfy UM strictly
- Defends dimensions used in constructing the HDI

More and more household level data are available recently
Group-Based HDI - Pros and Cons

- Pros
 - Easily applicable
 - Easily comprehensible

- Cons
 - Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
 - May not satisfy UM strictly
 - Defends dimensions used in constructing the HDI
 - More and more household level data are available recently
Group-Based HDI - Pros and Cons

- **Pros**
 - Easily applicable
 - Easily comprehensible

- **Cons**
 - Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
Group-Based HDI - Pros and Cons

- Pros
 - Easily applicable
 - Easily comprehensible

- Cons
 - Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
 - May not satisfy UM strictly
Group-Based HDI - Pros and Cons

- **Pros**
 - Easily applicable
 - Easily comprehensible

- **Cons**
 - Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
 - May not satisfy UM strictly
 - Defends dimensions used in constructing the HDI
Group-Based HDI - Pros and Cons

Pros
- Easily applicable
- Easily comprehensible

Cons
- Similar to Kuznet-ratio. Thus, it does not take into account the entire distribution.
- May not satisfy UM strictly
- Defends dimensions used in constructing the HDI
- More and more household level data are available recently
Suppose we choose dimensions so that individual level information for each of them is available.

<table>
<thead>
<tr>
<th>Dim 1</th>
<th>Dim 2</th>
<th>Dim 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Person 2</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Person 3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Let human development be calculated by applying W_H or W_F.

Question: Where should the dollar be spent?

Using W_H: Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1.

Using W_F: Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1.
Policy Exercise Revisited - Other Form of Inequality

- Suppose we choose dimensions so that individual level information for each of them is available
- Reconsider the achievement matrix

<table>
<thead>
<tr>
<th>Dim 1</th>
<th>Dim 2</th>
<th>Dim 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Let human development be calculated by applying W_H or W_F.

Question: Where should the dollar be spent?

Using W_H: Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1

Using W_F: Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1
Suppose we choose dimensions so that individual level information for each of them is available.

Reconsider the achievement matrix:

\[X = \begin{array}{c|ccc}
\text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array} \]

Let human development be calculated by applying \(W_H \) or \(W_F \).

Question: Where should the dollar be spent?

Using \(W_H \): Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1.

Using \(W_F \): Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1.
Suppose we choose dimensions so that individual level information for each of them is available.

Reconsider the achievement matrix

\[X = \begin{array}{c|ccc}
& \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array} \]

Let human development be calculated by applying \(W_H \) or \(W_F \).
Suppose we choose dimensions so that individual level information for each of them is available.

Reconsider the achievement matrix:

\[
\begin{array}{c|ccc}
 & \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

Let human development be calculated by applying \(W_H\) or \(W_F\).

Question: Where should the dollar be spent?
• Suppose we choose dimensions so that individual level information for each of them is available

• Reconsider the achievement matrix

\[X = \begin{array}{c|ccc}
 & \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array} \]

• Let human development be calculated by applying \(W_H \) or \(W_F \)

• Question: Where should the dollar be spent?
 - Using \(W_H \): Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1
Suppose we choose dimensions so that individual level information for each of them is available.

Reconsider the achievement matrix

\[
X = \begin{array}{c|ccc}
 & \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

Let human development be calculated by applying \(W_H\) or \(W_F\).

Question: Where should the dollar be spent?

- Using \(W_H\): Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1
- Using \(W_F\): Answer: Either on dim 1 of person 3, or on dim 2 of person 2, or on dim 3 of person 1
Policy Exercise

\[H = \begin{array}{c|c|c|c}
 & \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array} \]

- Where should the assistance be made from an ethical point of view?
Where should the assistance be made from an ethical point of view?

- Suppose, the overall achievement of the \(n^{\text{th}} \) individual is calculated by \(\frac{x_{n1} + x_{n2} + x_{n3}}{3} \)
Policy Exercise

\[
H = \begin{array}{c|ccc}
& \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

- Where should the assistance be made from an ethical point of view?
- Suppose, the overall achievement of the \(n^{\text{th}} \) individual is calculated by \((x_{n1} + x_{n2} + x_{n3}) / 3 \)
- Achievement vector across individuals: \((0.63, 0.5, 0.37)\)
Policy Exercise

\[H = \begin{array}{c|c|c|c}
 & \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array} \]

- Where should the assistance be made from an ethical point of view?
- Suppose, the overall achievement of the \(n^{th} \) individual is calculated by
 \[\left(x_{n1} + x_{n2} + x_{n3} \right) / 3 \]
 - Achievement vector across individuals: (0.63, 0.5, 0.37)
- Spend the dollar on dim 1 of person 3
Policy Exercise

\[
H = \begin{bmatrix}
\text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{bmatrix}
\]

- Where should the assistance be made from an ethical point of view?
 - Suppose, the overall achievement of the \(n^{th}\) individual is calculated by \((x_{n1} + x_{n2} + x_{n3}) / 3\)
 - Achievement vector across individuals: \((0.63, 0.5, 0.37)\)
 - Spend the dollar on dim 1 of person 3
 - Overall achievement vector: \((0.63, 0.5, 0.4)\)
Policy Exercise

\[H = \begin{array}{|c|c|c|}
\hline
& \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\hline
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\hline
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\hline
\end{array} \]

- Where should the assistance be made from an ethical point of view?
 - Suppose, the overall achievement of the \(n^{\text{th}} \) individual is calculated by
 \[(x_{n1} + x_{n2} + x_{n3}) / 3 \]
 - Achievement vector across individuals: \((0.63, 0.5, 0.37)\)
 - Spend the dollar on dim 1 of person 3
 - Overall achievement vector: \((0.63, 0.5, 0.4)\)
 - Spend the dollar on dim 2 of person 2
Policy Exercise

\[
H = \begin{array}{c|ccc}
 & \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

- Where should the assistance be made from an ethical point of view?
 - Suppose, the overall achievement of the \(n \)\(^{th} \) individual is calculated by
 \[
 \left(x_{n1} + x_{n2} + x_{n3} \right) / 3
 \]
 - Achievement vector across individuals: \((0.63, 0.5, 0.37)\)
 - Spend the dollar on dim 1 of person 3
 - Overall achievement vector: \((0.63, 0.5, 0.4)\)
 - Spend the dollar on dim 2 of person 2
 - Overall achievement vector: \((0.63, 0.53, 0.37)\)
Where should the assistance be made from an ethical point of view?

- Suppose, the overall achievement of the n^{th} individual is calculated by \((x_{n1} + x_{n2} + x_{n3}) / 3\)

 \begin{itemize}
 \item Achievement vector across individuals: \((0.63, 0.5, 0.37)\)
 \item Spend the dollar on dim 1 of person 3
 \begin{itemize}
 \item Overall achievement vector: \((0.63, 0.5, 0.4)\)
 \end{itemize}
 \item Spend the dollar on dim 2 of person 2
 \begin{itemize}
 \item Overall achievement vector: \((0.63, 0.53, 0.37)\)
 \end{itemize}
 \item Spend the dollar on dim 2 of person 2
 \end{itemize}
Where should the assistance be made from an ethical point of view?

Suppose, the overall achievement of the \(n^{\text{th}} \) individual is calculated by
\[
\frac{x_{n1} + x_{n2} + x_{n3}}{3}
\]
Achievement vector across individuals: \((0.63, 0.5, 0.37)\)

- Spend the dollar on dim 1 of person 3
 - Overall achievement vector: \((0.63, 0.5, 0.4)\)
- Spend the dollar on dim 2 of person 2
 - Overall achievement vector: \((0.63, 0.53, 0.37)\)
- Spend the dollar on dim 2 of person 2
 - Overall achievement vector: \((0.67, 0.5, 0.37)\)
These indices can also not differentiate the following two allocations

\[H = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 3 & 0 \\ 0 & 4 & 3 \end{pmatrix}, \quad H_0 = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 3 & 0 \\ 0 & 4 & 3 \end{pmatrix} \]
Association Sensitivity

- These indices can also not differentiate the following two allocations

\[
H = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4
\end{bmatrix}, \quad H' = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.4 & 0.8 \\
0.3 & 0.3 & 0.4
\end{bmatrix}
\]
These indices can also not differentiate the following two allocations:

\[
\begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4
\end{bmatrix},
\begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.4 & 0.8 \\
0.3 & 0.3 & 0.4
\end{bmatrix}
\]

\(H'\) is obtained from \(H\) by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002), Decancq and Lugo (2008), Seth (2009)).
Association Sensitivity

- These indices can also not differentiate the following two allocations

\[
H = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4 \\
\end{bmatrix}, \quad H' = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.4 & 0.8 \\
0.3 & 0.3 & 0.4 \\
\end{bmatrix}
\]

- \(H'\) is obtained from \(H\) by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002), Decancq and Lugo (2008), Seth (2009))

- The second form of inequality across persons - association sensitive inequality
Association Sensitivity

- These indices can also not differentiate the following two allocations:

\[
H = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4 \\
\end{bmatrix}, \quad H' = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.4 & 0.8 \\
0.3 & 0.3 & 0.4 \\
\end{bmatrix}
\]

- \(H' \) is obtained from \(H \) by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002), Decancq and Lugo (2008), Seth (2009))

- The second form of inequality across persons - association sensitive inequality

- Association Sensitivity Axiom
These indices can also not differentiate the following two allocations

\[
H = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4
\end{bmatrix}, \quad H' = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.4 & 0.8 \\
0.3 & 0.3 & 0.4
\end{bmatrix}
\]

\(H'\) is obtained from \(H\) by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002), Decancq and Lugo (2008), Seth (2009))

The second form of inequality across persons - association sensitive inequality

Association Sensitivity Axiom

- Strictly decreasing in increasing association (SDIA) - \(W(H') < W(H)\)
These indices can also not differentiate the following two allocations

\[
H = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.3 & 0.8 \\
0.3 & 0.4 & 0.4
\end{bmatrix}, \quad H' = \begin{bmatrix}
0.8 & 0.8 & 0.3 \\
0.4 & 0.4 & 0.8 \\
0.3 & 0.3 & 0.4
\end{bmatrix}
\]

The second form of inequality across persons - association sensitive inequality

Association Sensitivity Axiom

- Strictly decreasing in increasing association (SDIA) - W(H′) < W(H)
- H′ is obtained from H by a sequence of association increasing transfers
Association Sensitivity

- These indices can also not differentiate the following two allocations
 \[
 H = \begin{bmatrix}
 0.8 & 0.8 & 0.3 \\
 0.4 & 0.3 & 0.8 \\
 0.3 & 0.4 & 0.4 \\
 \end{bmatrix}, \quad H' = \begin{bmatrix}
 0.8 & 0.8 & 0.3 \\
 0.4 & 0.4 & 0.8 \\
 0.3 & 0.3 & 0.4 \\
 \end{bmatrix}
 \]

- \(H'\) is obtained from \(H\) by an association increasing transfer (Atkinson and Bourguignon (1982), Boland and Proschan (1988), Tsui (1995, 1999, 2002), Decancq and Lugo (2008), Seth (2009))

- The second form of inequality across persons - association sensitive inequality

- Association Sensitivity Axiom
 - Strictly decreasing in increasing association (SDIA) - \(W(H') < W(H)\)
 - \(H'\) is obtained from \(H\) by a sequence of association increasing transfers

- **Proposition:** A human development index that aggregates across persons first and then across dimensions is not sensitive to association among dimensions
Corollary: No path independent human development index is sensitive to association among dimensions
Corollary: No path independent human development index is sensitive to association among dimensions

To be association sensitive the aggregation must take place across dimensions first and then across persons
Corollary: No path independent human development index is sensitive to association among dimensions

To be association sensitive the aggregation must take place across dimensions first and then across persons

Possible association sensitive human development Index (W):

$$W(X) = \mu_\alpha \mu_\beta (x_1, \ldots, x_N),$$
Corollary: No path independent human development index is sensitive to association among dimensions

To be association sensitive the aggregation must take place across dimensions first and then across persons

Possible association sensitive human development Index (W):

First stage: aggregates across dimensions by $\mu_{\beta}(\cdot)$. Second stage: aggregates across persons by $\mu_{\alpha}(\cdot)$
Corollary: No path independent human development index is sensitive to association among dimensions

To be association sensitive the aggregation must take place across dimensions first and then across persons

Possible association sensitive human development Index (W):

- First stage: aggregates across dimensions by $\mu_\beta(\cdot)$. Second stage: aggregates across persons by $\mu_\alpha(\cdot)$
- $W(X) = \mu_\alpha(\mu_\beta(x_1), \ldots, \mu_\beta(x_N))$
Corollary: No path independent human development index is sensitive to association among dimensions

To be association sensitive the aggregation must take place across dimensions first and then across persons

Possible association sensitive human development Index (W):

- First stage: aggregates across dimensions by $\mu_\beta (\cdot)$. Second stage: aggregates across persons by $\mu_\alpha (\cdot)$

 $W(X) = \mu_\alpha \left(\mu_\beta (x_{1^*}), \ldots, \mu_\beta (x_{N^*}) \right)$

W satisfies NORM, LHOM, ANON, MON, POPRI, CONT, SUBCON, UM, and
Corollary: No path independent human development index is sensitive to association among dimensions

To be association sensitive the aggregation must take place across dimensions first and then across persons

Possible association sensitive human development Index (\mathcal{W}):

- First stage: aggregates across dimensions by $\mu_\beta (\cdot)$. Second stage: aggregates across persons by $\mu_\alpha (\cdot)$

$$\mathcal{W} (X) = \mu_\alpha \left(\mu_\beta (x_{1*}) , \ldots , \mu_\beta (x_{N*}) \right)$$

\mathcal{W} satisfies NORM, LHOM, ANON, MON, POPRI, CONT, SUBCON, UM, and

- SDIA if and only if $\alpha < \beta \leq 1$
Where should the dollar be spent according to W?
Policy Exercise

\[
H = \begin{bmatrix}
\text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{bmatrix}
\]

- Where should the dollar be spent according to \(W \)?
- Suppose, \(\alpha = -2 \) and \(\beta = 0.1 \)
Policy Exercise

\[H = \begin{array}{ccc}
\text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array} \]

- Where should the dollar be spent according to \(W \)?
 - Suppose, \(\alpha = -2 \) and \(\beta = 0.1 \)
 - Spend the dollar on dim 1 of person 3
Where should the dollar be spent according to \mathcal{W}?

- Suppose, $\alpha = -2$ and $\beta = 0.1$
- Spend the dollar on dim 1 of person 3
 - Level of human development is $= 0.465$
Policy Exercise

\[H = \begin{array}{|c|c|c|}
\hline
& \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\hline
\end{array} \]

- Where should the dollar be spent according to \(W \)?
 - Suppose, \(\alpha = -2 \) and \(\beta = 0.1 \)
 - Spend the dollar on dim 1 of person 3
 - Level of human development is \(= 0.465 \)
 - Spend the dollar on dim 2 of person 2
Where should the dollar be spent according to \mathcal{W}?

- Suppose, $\alpha = -2$ and $\beta = 0.1$
- Spend the dollar on dim 1 of person 3
 - Level of human development is $= 0.465$
- Spend the dollar on dim 2 of person 2
 - Level of human development is $= 0.456$
Policy Exercise

\[
H = \begin{array}{ccc}
\text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\end{array}
\]

Where should the dollar be spent according to \(\mathcal{W} \)?

- Suppose, \(\alpha = -2 \) and \(\beta = 0.1 \)
- Spend the dollar on dim 1 of person 3
 - Level of human development is \(= 0.465 \)
- Spend the dollar on dim 2 of person 2
 - Level of human development is \(= 0.456 \)
- Spend the dollar on dim 3 of person 1
Policy Exercise

\[
\begin{array}{|c|c|c|c|}
\hline
& \text{Dim 1} & \text{Dim 2} & \text{Dim 3} \\
\hline
\text{Person 1} & 0.8 & 0.8 & 0.3 \\
\hline
\text{Person 2} & 0.4 & 0.3 & 0.8 \\
\hline
\text{Person 3} & 0.3 & 0.4 & 0.4 \\
\hline
\end{array}
\]

- Where should the dollar be spent according to \(\mathcal{W} \)?
 - Suppose, \(\alpha = -2 \) and \(\beta = 0.1 \)
 - Spend the dollar on dim 1 of person 3
 - Level of human development is \(= 0.465 \)
 - Spend the dollar on dim 2 of person 2
 - Level of human development is \(= 0.456 \)
 - Spend the dollar on dim 3 of person 1
 - Level of human development is \(= 0.452 \)
Application to Mexico (Income, Education, and Health)

<table>
<thead>
<tr>
<th>State</th>
<th>HDI (W_A)</th>
<th>WF (\alpha = -2)</th>
<th>\mathcal{W} (\beta = -1) (\alpha = -3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Luis Potosí</td>
<td>0.716 (24)</td>
<td>0.258 (21)</td>
<td>0.223 (22)</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>0.751 (17)</td>
<td>0.268 (20)</td>
<td>0.232 (18)</td>
</tr>
<tr>
<td>Sonora</td>
<td>0.790 (07)</td>
<td>0.386 (06)</td>
<td>0.309 (06)</td>
</tr>
<tr>
<td>Tabasco</td>
<td>0.719 (22)</td>
<td>0.296 (15)</td>
<td>0.254 (14)</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>0.771 (12)</td>
<td>0.349 (08)</td>
<td>0.287 (08)</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>0.736 (19)</td>
<td>0.309 (13)</td>
<td>0.258 (12)</td>
</tr>
<tr>
<td>Veracruz de I dL</td>
<td>0.698 (27)</td>
<td>0.213 (29)</td>
<td>0.193 (29)</td>
</tr>
</tbody>
</table>
Application to Mexico (Income, Education, and Health)

<table>
<thead>
<tr>
<th>State</th>
<th>HDI (W_A)</th>
<th>$W_F \alpha = -2$</th>
<th>$\mathcal{W} \beta = -1, \alpha = -3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Luis Potosí</td>
<td>0.716 (24)</td>
<td>0.258 (21)</td>
<td>0.223 (22)</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>0.751 (17)</td>
<td>0.268 (20)</td>
<td>0.232 (18)</td>
</tr>
<tr>
<td>Sonora</td>
<td>0.790 (07)</td>
<td>0.386 (06)</td>
<td>0.309 (06)</td>
</tr>
<tr>
<td>Tabasco</td>
<td>0.719 (22)</td>
<td>0.296 (15)</td>
<td>0.254 (14)</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>0.771 (12)</td>
<td>0.349 (08)</td>
<td>0.287 (08)</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>0.736 (19)</td>
<td>0.309 (13)</td>
<td>0.258 (12)</td>
</tr>
<tr>
<td>Veracruz de I dlL</td>
<td>0.698 (27)</td>
<td>0.213 (29)</td>
<td>0.193 (29)</td>
</tr>
</tbody>
</table>

- **A sequence of association increasing transfers for Tabasco**
Application to Mexico (Income, Education, and Health)

<table>
<thead>
<tr>
<th>State</th>
<th>HDI (W_A)</th>
<th>WF (\alpha = -2)</th>
<th>W (\beta = -1, \alpha = -3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Luis Potosí</td>
<td>0.716 (24)</td>
<td>0.258 (21)</td>
<td>0.223 (22)</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>0.751 (17)</td>
<td>0.268 (20)</td>
<td>0.232 (18)</td>
</tr>
<tr>
<td>Sonora</td>
<td>0.790 (07)</td>
<td>0.386 (06)</td>
<td>0.309 (06)</td>
</tr>
<tr>
<td>Tabasco</td>
<td>0.719 (22)</td>
<td>0.296 (15)</td>
<td>0.254 (14)</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>0.771 (12)</td>
<td>0.349 (08)</td>
<td>0.287 (08)</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>0.736 (19)</td>
<td>0.309 (13)</td>
<td>0.258 (12)</td>
</tr>
<tr>
<td>Veracruz de I dI</td>
<td>0.698 (27)</td>
<td>0.213 (29)</td>
<td>0.193 (29)</td>
</tr>
</tbody>
</table>

A sequence of association increasing transfers for Tabasco

<table>
<thead>
<tr>
<th>State</th>
<th>HDI (W_A)</th>
<th>WF (\alpha = -2)</th>
<th>W (\beta = -1, \alpha = -3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabasco</td>
<td>0.719 (22)</td>
<td>0.296 (15)</td>
<td>0.244 (15)</td>
</tr>
</tbody>
</table>
Summary

- Traditional human development indices are not sensitive to inequality across persons.
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form is distribution sensitive inequality
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
- The second form of inequality - dimensional interactions are important
 - Aggregation should take place across dimensions first, and then across persons

Trade-off?
We treated dimensions symmetrically; we could also apply weighted generalized mean
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
 - The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index

Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
 - The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally
 - Harttgen, Klasen, and Misselhorn Index
- The second form of inequality - dimensional interactions are important
 - Aggregation should take place across dimensions first, and then across persons
- Trade-off?
 - We treated dimensions symmetrically; we could also apply weighted generalized mean
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally
- Trade-off?
 - We treated dimensions symmetrically; we could also apply weighted generalized mean
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
 - The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally
 - Harttgen, Klasen, and Misselhorn Index
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
 - The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally
 - Harttgen, Klasen, and Misselhorn Index
 - The second form of inequality - dimensional interactions are important
Summary

- Traditional human development indices are not sensitive to inequality across persons.
- Two forms of inequality.
- The first form is distribution sensitive inequality.
 - Measures incorporating inequality internally:
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally:
 - Harttgen, Klasen, and Misselhorn Index
- The second form of inequality - dimensional interactions are important.
- Aggregation should take place across dimensions first, and then across persons.
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally
 - Harttgen, Klasen, and Misselhorn Index
- The second form of inequality - dimensional interactions are important
- Aggregation should take place across dimensions first, and then across persons
 - Trade-off?
Summary

- Traditional human development indices are not sensitive to inequality across persons
- Two forms of inequality
- The first form is distribution sensitive inequality
 - Measures incorporating inequality internally
 - Hicks Index
 - Foster, Lopez-Calva, Szekely Index
 - Measures incorporating inequality externally
 - Harttgen, Klasen, and Misselhorn Index
- The second form of inequality - dimensional interactions are important
- Aggregation should take place across dimensions first, and then across persons
 - Trade-off?
- We treated dimensions symmetrically; we could also apply weighted generalized mean