Stochastic Dominance Analysis for the Study of Multidimensional Well-being

Instructor: Gaston Yalonetzky, Research Officer, OPHI

Class Objectives:

  • Introduction to stochastic dominance analysis. What is it useful for? Different orders of stochastic dominance. Unidimensional versus multidimensional.
  • Multidimensional dominance criteria: Atkinson and Bourguignon (1982) generalized by Crawford (2005); and Duclos et. al. (2006).
  • Statistical inference techniques: Crawford (2005) and Duclos et. al. (2006). Emphasis on Crawford (2005).



[flashvideo title=Stochastic Dominance image=wp-content/uploads/default_video.jpg file=wp-content/uploads/SSDominance_Yalonetzky_Part1_030908.m4v /]

[flashvideo title=Stochastic Dominance image=wp-content/uploads/default_video.jpg file=wp-content/uploads/SSDominance_Yalonetzky_Part2_030908.m4v /]

Download Videos (large files)
[To save file, right click to “Save Target As” (Windows) or control + click (Mac)]
Stochastic Dominance Part 1
Stochastic Dominance Part 2


Answer Key (XLS)
Answer Key (PDF)

Reading List

Basic Readings:
ATKINSON, A.B and F. BOURGUIGNON (1982), “The comparison of multidimensioned distributions of economic status”, Review of Economic Studies, 49(2): 183-201.
CRAWFORD, I. (2005), “A nonparametric test of stochastic dominance in multivariate distributions”, IFS, Mimeo.
DUCLOS, J-Y., SAHN, D and S. YOUNGER (2006), “Robust Multidimensional Poverty Comparisons”, The Economic Journal. 116(514): 943-68.

Further readings:
FIELDS, G. (2001), Distribution and Development: A New Look at the Developing World, MIT Press.
ANDERSON, G. (1996), ‘Nonparametric tests of stochastic dominance in income distributions’, Econometrica, 64(5): 1183-1193.
DAVIDSON, R. and J. DUCLOS (2000), “Statistical inference for stochastic dominance and for the measurement of poverty and inequality”, Econometrica, 68(6): 1435-65.

Download All Class Files as a Zip File