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Introduction

The case for an assessment of poverty considering multiple deprivations has been well
argued for a long time.1 While there is a broad consensus about the multidimensionality
of poverty, there is a debate as to whether the multiple indicators of deprivations should
be brought together into a composite index or not.2 On the other hand, it seems that a
composite measure of multiple deprivations is unavoidable when the purpose is to quan-
tify the incidence of multiple deprivations within the same individuals. In practice, one
of the approaches proposed to measure multidimensional poverty with a composite index
is the counting approach, which is based on counting the number of dimensions in which
people are deprived.3 The approach has gained recent popularity with the Alkire-Foster
(AF) family of poverty indices (Alkire and Foster, 2010). These indices identify the mul-
tidimensionally poor by counting the number of dimensions in which they are deprived.
First, deprivation in any particular dimension is determined by comparing the achievement
in that dimension against the respective dimension-speci�c poverty line. This is done for all
dimensions/variables and then the (weighted) number of deprivations is compared against
a multidimensional-deprivation cut-o¤.4 By changing the cut-o¤ from some minimum value
up to the total number of dimensions, the AF family can adopt identi�cation criteria ranging
from the union to the intersection approach.5� 6 The AF measures are a function of the
headcount of multidimensional poverty, and of the average number of deprivations su¤ered
by the poor (and the average poverty gaps for continuous variables). The intuitiveness and
easy applicability of their identi�cation and aggregation methods are re�ected in the recent
decision by the UNDP to estimate members of the AF family, including the adjusted head-
count ratio, M0; for the �rst time for 104 countries (See Alkire and Santos, 2010). This is
part of an ongoing trend of the AF measures being applied in poverty measurement as well
as in other �elds unrelated to poverty measurement.7

An immediate concern with any composite index, like those of the AF family, is that
the orderings they produce, when comparing di¤erent groups, may not be robust to changes
in the index�s parameters.8 For instance, in the case of the AF measures, changes in the
dimensions�weights or poverty lines, as well as changes in the multidimensional cut-o¤, could
reverse the rankings of di¤erent countries or provide contradictory results when ascertaining

1See for instance, Sen (2001, chapter 4), and Sen (2009, chapter 12).
2Ravallion (2010), among others, discusses the pros and cons of each option.
3For a comparative discussion of approaches to measuring multidimensional poverty, see Atkinson (2003).

For a stochastic dominance approach to multidimensional poverty see Duclos et al. (2006, 2007).
4For instance, if considering 10 dimensions of wellbeing, a multidimensional deprivation cut-o¤ of 5 means

that a person is considered multidimensionally poor if the person is deprived in 5 or more of the 10 dimensions.
5According to the union approach, any person deprived in at least one dimension is considered multidimen-

sionally poor. On the other extreme, the intersection approach demands considering as multidimensionally
poor only people who are deprived in every dimension.

6A cut-o¤ equal to 1 yields the union approach when all dimensions are weighted equally in the counting.
Otherwise this is not necessarily true. On the other hand, a cut-o¤ equal to the minimum weight considered
always yields the union approach and vice versa.

7For instance, Batana (2008), Santos and Ura (2008), Alkire and Seth (2008), Battiston et al. (2009),
Foster et al. (2009), Azevedo and Robles (2009), Singh (2009), Trafton (2009) and Roche (2009).

8For a recent articulation of this concern see, for instance, Ravallion (2010).
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the direction of changes in poverty over time. With these concerns in mind, Alkire and Foster
(2010) and Lasso de la Vega (2009) derived dominance conditions that, when ful�lled, ensure
the robustness of comparisons to changes in the value of the multidimensional cut-o¤. These
conditions, however, assume that weights and poverty lines remain �xed. But what if these
also move? This paper derives extended conditions that, when ful�lled, ensure the robustness
of comparisons to changes not just in the value of the multidimensional cut-o¤, but also to
changes in weights and dimension-speci�c poverty lines. The dominance conditions are based
on both the cumulative density functions and the survival functions, and combine results
from both Anderson (2008) and Alkire and Foster (2010).
First, the paper provides dominance conditions for the adjusted headcount ratio, M0,

for applications with ordinal variables (e.g. as in Alkire and Santos (2010)). Then the
paper also provides �rst-order dominance conditions for the whole Alkire-Foster family when
all the variables are continuous.9 The paper�s conditions work with bivariate distributions.
However, even though bivariate applications have also been popular in poverty and wellbeing
analysis (e.g. Atkinson and Bourguignon (1982), Duclos et al. (2006, 2007)), recent empirical
applications of the Alkire-Foster family, and other indices, consider more than two variables.
Do the paper�s conditions work in these circumstances? This question is answered with the
following two results: 1) Traditional stochastic dominance conditions based on multivariate
generalizations of Atkinson and Bourguignon (1982) are not applicable to the Alkire-Foster
family for most identi�cation criteria when three or more variables are considered. 2) Only
when the poor are identi�ed by extreme approaches, i.e. by either union or intersection,
the mentioned dominance conditions apply to the Alkire-Foster family for any number of
variables. In those cases, the dominance conditions depend only on the marginal distributions
(union approach) or only on the joint cumulative distributions (intersection approach).

The next section brie�y presents a version of the stochastic dominance conditions already
derived by Alkire and Foster (2010) and Lasso de la Vega (2009) for the multidimensional
cut-o¤. It is followed by a section introducing the new conditions for the adjusted headcount
ratio. The subsequent section provides a �rst-order dominance condition for the whole Alkire-
Foster family with continuous variables. These two previous sections work with bivariate
distributions. Then the problem of applying traditional dominance conditions to three or
more variables is discussed in the next section. The subsequent two sections show the peculiar
cases of the union and the intersection approaches, respectively. The paper concludes with
some concluding remarks.

The stochastic dominance conditions of Alkire and Fos-

ter for the adjusted headcount ratio

Notation

Consider a matrix X, whose N rows have information on the attainments of N individuals.
Each column, therefore, hosts the distribution of each attainment across the population. The
number of columns/variables is D. A typical attainment element of the matrix is: xnd ( R),

9With the exception of the adjusted headcount ratio, the members of the Alkire-Foster family are sensitive
to the gaps between the values of the variables and their speci�c poverty lines. Therefore these composite
indices are only suitable for continuous variables.
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that is, the attainment of individual n in dimension/variable d.
The identi�cation of the multidimensionally poor has two stages. In the �rst stage, the

poverty lines, speci�c to each variable, are denoted by zd;
10 and a person is deemed poor

in variable d if: xnd zd.In the second stage, the number of deprivations is computed,

weighting each deprivation with weights, wd; such that: wd R+
D

d
wd = D. Then the

weighted number of deprivations su¤ered by individual n is: cn
D
d=1 wdI (zd > xnd) :

11

If cn k; where k R+0 is a multidimensional poverty cut-o¤ such that 0 k D, then
individual n is said, and identi�ed, to be multidimensionally poor.

Now the multidimensional headcount can be de�ned:

H (X; k; Z)
1

N

N

n=1

I (cn k) (1)

Also the average number of deprivations of the multidimensionally poor in the same
period is de�ned:

A (X ; k; Z)
N
n=1 I (cn k) cn
DNH (X; k; Z)

(2)

Finally the adjusted headcount ratio is:

M0 (X; k; Z) H (X; k; Z)A (X; k; Z) =
N
n=1 I (cn k) cn

DN
(3)

The conditions

Alkire and Foster (2010) derive a dominance condition that ensures the robustness of a
comparison based onH for all values of k.12 To derive the condition they construct a counting
vector in the population by de�ning the variable: an D cn. Naturally, an [0; D] : Then
the vector is a := (a1; : : : ; aN). The �rst dominance result is the following:

ai FD a
j H i Hj k [0; D] (4)

where i and j denote two compared groups, and FDmeans "(weakly) �rst-order stochas-
tically dominates". The proof is simple: ai FD a

j implies that F i (D k) F i (D k) k
[0; D]. But notice that:

F (D k) = 1
N

N

n=1
I (D cn D k) = 1

N

N

n=1
I (cn k) = H (k) : Hence condi-

tion (4) follows. A second result, involving the adjusted headcount ratio, is the following:

ai FD a
j H i Hj M0i M0j k [0; D] (5)

10From a vector of poverty lines, Z : (z1; : : : ; zd; : : : ; zD) :
11I () is an indicator that takes the value of 1 if the expression in parenthesis is true. Otherwise it takes

the value of 0.
12Lasso de la Vega (2009) also shows that this condition is relevant for a whole family of poverty counting

measures.
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The proof is straightforward for natural values of k, as Lasso de la Vega (2009) and Alkire
and Foster (2010) shows. Since I consider below values for k in the real line, I prove condition
(5) for continuous values of k, accordingly. The �rst step consists of writing M0 (k) as a
function of multidimensional headcounts di¤erentials:

M0 (k) =
1

D
H (D)D

D

k

tdH (t) (6)

Integrating
D

k

tdH (t) in (6), by parts, yields:

M0 (k) =
1

D
kH (k) +

D

k

H (t) dt (7)

As is clear from (7), M0 (k) is a linear combination of all the headcount ratios from k to
D. Hence H i Hj k [0; D] M0i M0j k [0; D] : These conditions establish the
robustness of the comparison using H and M0 for all values of the multidimensional cut-o¤,
k, but for a �xed set of weights and poverty lines. However, the comparison may or may not
be robust to changes in either wd; Z, or both, that may alter the distributions of a. In the
next section, a dominance condition is derived for the bivariate case. Its ful�llment ensures
the robustness of comparisons to all weights, poverty lines and multidimensional cut-o¤s.

The extended conditions for the adjusted headcount ra-

tio for the bivariate case

An intuitive derivation

The ful�llment of the above dominance conditions requires that: 1
Ni

N i

n=1
I (D cin D k)

1
Nj

Nj

n=1
I (D cjn D k) k [0; D], where the superscripts i and j denote groups as

above. Notice that the cumulative functions, F (D k), bear the key characteristics that de-
�ne the social welfare functions considered in the stochastic dominance literature. Both types
of functions are "additively separable and symmetric with respect to individuals"(Atkinson
and Bourguignon, 1982, p. 190). Moreover, they are both invariant to population repli-
cations.13 Therefore it is possible, in principle, to integrate (or sum) by parts and derive
conditions under which F i (D k) F j (D k) hold independently of poverty lines and
weights. In this analogy the role of the individual welfare function is played by the indicator
function: I (D cn D k). Hence a �rst-order stochastic dominance condition for the
headcount ratio could be derived by summing by parts. But since these dominance results
are known,14 in this section the condition is derived intuitively for the case of two variables,
noticing the following two results that hold when all variables are ordinal :

13This property is implicit in the formulas of the social welfare functions considered by Atkinson and
Bourguignon (1982).
14See, for example, Yalonetzky (2010) for the case of ordinal variables.
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1. The derivative of the individual welfare function, I (w1I (x1 z1) + w2I (x2 z2) k),
with respect to a unitary change in x1, is the following di¤erence function:

I (cn k)

x1
= I (w2I (x2 z2) < k x1 > z1) I (x1 x1 z1) (8)

I (x1 z1 cn k) I (x1 x1 > z1) I (cn w1I (x1 z1) < k)

Expression (8), which is non-positive, states that a decrease in x1 changes the indicator
function from 0 to 1 if the individual was both multidimensionally non-poor as well as non-
poor in dimension 1 (I (cin < k x1 > z1)) and if the decrease renders the individual poor
in dimension 1 and multidimensionally poor according to the cut-o¤ value k. It also states
that an increase in x1 changes the indicator functions from 1 to 0 if the individual was mul-
tidimensionally poor (according to k), as well as poor in dimension 1 (I (cin k x1 z1))
and if the increase renders the individual non-poor in dimension 1 and multidimensionally
non-poor according to the cut-o¤ value k. Otherwise no change on the indicator function is
produced. In either case, the di¤erence function has a non-positive value ( xd I , as it
were).

On the other hand, the cross-partial derivative,
2I(cn k)
x1 x2

; can be either positive, negative
or equal to zero:

2I (cn k)

x1 x2
= I (w1 < k w2 < k) I (w1 > k w2 > k) (9)

Expression (9) indicates the circumstances under which the di¤erence I(cn k)
x1

may
change from 0 to -1, and vice versa, when x2 changes. It also states the circumstances under
which the di¤erence ratio I(cn k)

x2
may change from 0 to -1, and vice versa, when x1 changes.

The di¤erent signs that this cross-partial derivative can take re�ect the di¤erent ways in
which the two variables may a¤ect each other�s e¤ect on multidimensional poverty. For
instance, when poverty identi�cation follows the intersection approach (w1 < k w2 < k),
then the impact of an increase in x1 is eliminated by a previous increase in x2 if the per-
son was poor to begin with (expression (22) changes value from -1 to 0). This is a case of
ALEP substitution. 15 By contrast, when poverty identi�cation follows the union approach
(w1 > k w2 > k), the impact of an increase in x1 is enhanced by a previous increase in x2
if the person was poor to begin with (expression (22) changes value from 0 to -1). The latter
is an example of ALEP complementarity, in which the cross-di¤erence (9) is negative.

Now, in the bivariate stochastic dominance literature there are four well-established �rst-
order conditions, all of which are relevant to the Alkire-Foster family. They all stem from
the following equations:16

15For a de�nition of ALEP substitution and complementarity see Kannai (1980).
16The equivalent equations for ordinal variables are very similar. The cumulative and survival density

functions need to be replaced by cumulative and survival multinomial probabilities, plus some minor adjust-
ments. See Yalonetzky (2010).
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W =
x1

0

U1 (x1; x2 F1 (x1) dx1
x2

0

U2 (x1; x2 F2 (x2) dx2 (10)

+
x1

0

x2

0

U12 (x1; x2 F12 (x1; x2) dx1dx2

and:

W =
x1

0

U1 (x1; F1 (x1) dx1 +
x2

0

U2 (0; x2 F2 (x2) dx2 (11)

+
x1

0

x2

0

U12 (x1; x2 F12 (x1; x2) dx1dx2

where Ud is the derivative of an individual welfare function U with respect to vari-
able xd; W W i W j, and W is a social welfare function; xd is the maximum value
taken by variable xd; and Fi; Fij ; etc. are survival functions. A condition associated with
F12 (x1; x2) ; F1; F2 0 x1; x2 [0; x1] [0; x2], requires the cross-partial derivative

to be negative, i.e. the two variables must be ALEP substites. An alternative condi-
tion, associated with F12 (x1; x2) ; F 1; F 2 0 x1; x2 [0; x1] [0; x2], requires the
cross-partial derivative to be positive, i.e. the variables must be ALEP complements. A
third condition stems from merging the �rst two distributional conditions. If these are
met simultaneously, then the comparison, W , is robust for all individual welfare func-
tions U , characterized by weak increasing monotonicity with respect to each variable, that is
U1 (x1; :) ; U2 (x2; :) 0 x1; x2 [0; x1] [0; x2]: The condition is stringent, but once ful�lled
it guarantees robustness for all increasingly monotonic functions irrespective of the sign of
their cross-partial derivative.

The �rst derivative of I (cn k) is non-positive. Yet a society is better-o¤ than another

one when its value for 1
N

N

n=1
I (cn k) is the lower. Therefore the distributional condi-

tions related to (10) and (11) are also relevant for 1
N

N

n=1
I (cn k). Since the cross-partial

derivatives of I (cn k) can take any sign, then only the third bivariate condition applies.
The dominance condition then becomes:

1

N i

Ni

n=1

I cin k
1

N j

Nj

n=1

I cjn k ; (12)

k [0; 2] wd R+

2

d=1

wd = 2; Z

F12 (x1; x2) ; F1; F2 0 x1; x2 [0; x1] [0; x2]

F12t (x1; x2) ; F 1; F 2 0 x1; x2 [0; x1] [0; x2]

Combining (12) with (7) leads to the following condition:
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(
1

N i

Ni

n=1

I cin k
1

N j

Nj

n=1

I cin k k [0; 2] ; (13)

wd R+

2

d=1

wd = 2; Z

F12 (x1; x2) ; F1; F2 0 x1; x2 [0; x1] [0; x2]

F12t (x1; x2) ; F 1; F 2 0 x1; x2 [0; x1] [0; x2]

M0
i M0

j k [0; 2] ; wd R+

2

d=1

wd = 2; Z

Notice that the ful�llment of the distributional conditions of (13) imply (and are implied
by) dominance of society i over j on H (and on M0) for each and every admissible value of
k. The reason is that all the di¤erent variants of H generated by di¤erent values of k are
based on individual welfare functions (I (cn k)) belonging to the same family of functions
characterized by weak increasing monotonicity with respect to each of their arguments.
Notice also that (13) is su¢ciently ful�lled if the conditions on the joint cumulative and
survival functions hold.

An illustration

The following is a simple example to show how these conditions work. Let there be two
variables, x and y, each taking only two values, e.g. x1 and x2. Now consider the following
joint distributions for societies A, B and C:

A =
y1 y2

x1 0:3 0:1
x2 0:1 0:5

; B =
y1 y2

x1 0:2 0:2
x2 0:2 0:4

; C =
y1 y2

x1 0:2 0:15
x2 0:15 0:5

In this simple example, with two variables each with only two values, the only values ad-
missible for cn, which is compared to k; are cn = [wx; wy; wx+wy]. But each can be combined
with a total of four sets of variable-speci�c poverty lines: (zx; zy = x1; y1) ; (zx; zy = x1; y2) ;
(zx; zy = x2; y1) ; (zx; zy = x2; y2). The last set is not interesting because in that case

clearly HA (k) = HB (k) = HC (k) = 1 k [wx; wy; wx + wy]: All the possible headcounts
for the three societies stemming from all the relevant combinations of poverty lines, multi-
dimensional cut-o¤s and weights are on Table 1.
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Table 1: Multidimensional headcount ratios

Values of cn wx vs wy zx; zy HA HB HC

wx wx > wy x1; y1 0.4 0.4 0.35
wx wx wy x1; y1 0.5 0.6 0.5
wx wx > wy x1; y2 0.4 0.4 0.35
wx wx wy x1; y2 1 1 1
wx x2; y1 1 1 1
wy wy > wx x1; y1 0.4 0.4 0.35
wy wy wx x1; y1 0.5 0.6 0.5
wy x1; y2 1 1 1
wy wy > wx x2; y1 0.4 0.4 0.35
wy wy wx x2; y1 1 1 1
wx + wy x1; y1 0.3 0.2 0.2
wx + wy x1; y2 0.4 0.4 0.35
wx + wy x2; y1 0.4 0.4 0.35

Notice that for all possible combinations of parameters: HC H i; i = A;B: However
the ranking between A and B depends on speci�c choices of parameters. For instance, with
an intersection approach and poverty lines zx; zy = x1; y1 : H

A > HB; whereas with a
union approach and the same poverty lines: HA HB:17 Checking out the cumulative and
survival functions brings out the explanation as to why C dominates A and B, why there is
no dominance between A and B, and why A fares better than B with a union approach, but
not with an intersection approach. The cumulative and survival functions are the following:

FA =
y1 y2

x1 0:3 0:4
x2 0:4 1

; FB =
y1 y2

x1 0:2 0:4
x2 0:4 1

; FC =
y1 y2

x1 0:2 0:35
x2 0:35 1

F
A
=

y1 y2
x1 1 0:6
x2 0:6 0:5

; F
B
=

y1 y2
x1 1 0:6
x2 0:6 0:4

; F
C
=

y1 y2
x1 1 0:65
x2 0:65 0:5

Notice that the cumulative probabilities of C are never above those of A or B. Therefore
in general, C cannot be poorer than A or B when the headcounts are based on identi�cations
that involve di¤erent forms of intersections between the variables. Moreover, the survival
probabilities of C are never below those of A and B. This means that for any selection of
poverty lines, weights and multidimensional cut-o¤s, C has at least as many people as A or B
who are above those thresholds, i.e. they are better-o¤. In other words, when the headcounts
are based on identi�cations that involve di¤erent forms of unions between variables, C is never
worse-o¤ vis-a-vis A or B. Meanwhile, B�s cumulative probabilities are never above those of
A�s, while A�s survival probabilities are never below those of B. Hence there is no dominance
relationship on the headcount (and hence on the adjusted headcount ratio) between the two
societies. Their pairwise ranking depends on the identi�cation approach chosen. A fares

17In this case, whether HA < HB or HA = HB depends on the relationship between wx and wy:
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better than B with union approaches, because its survival probabilities are higher, whereas
B fares better than A with intersection approaches because its cumulative probabilities are
lower.
As the example shows, probing the stochastic dominance conditions is tantamount to

testing the robustness of a pairwise ranking, based on a multidimensional headcount, to all
possible alternatives of weights, variable-speci�c poverty lines and multidimensional cut-o¤s.

A�rst-order stochastic dominance condition for the gen-

eral Alkire-Foster family using continuous variables

The general family of Alkire-Foster measures is composed of di¤erent ways of averaging
normalized deprivation gaps across people and variables, each way raising the deprivation
gaps to a di¤erent power stemming from the set of non-negative real numbers:

M (X ; k; Z)
1

N

N

n=1

I (cn k)
D

d=1

wd
D

zd xnd
zd +

R+0 ; (14)

where, for a value y, [y]+ = yI (y 0). Notice that when = 0 : M0 =
PN

n=1 I(cn k)cn
DN

, as
in (3).
M can now be regarded as a social welfare function, like W , and the respective individ-

ual welfare function, U , is: I (cn k) D
d=1

wd
D

zd xnd
zd +

. In the bivariate case, for the

derivation of a �rst-order dominance condition, it su¢ces to look at Ud and the cross-partial
derivative, as in the previous section. Moreover, if it is found that U12 can take any sign,
then the �rst-order dominance condition for the Alkire-Foster family of measures depends
also on both the cumulative density and survival functions.

The partial derivative of I (cn k) D
d=1

wd
D

zd xnd
zd +

with respect to xt is:

dI (cn k) D
d=1

wd
D

zd xnd
zd +

dxt
=

D

d=1

wd
D

zd xnd
zd +

dI (cn k)

dxt
(15)

+I (cn k)

d D
d=1

wd
D

zd xnd
zd +

dxt
;

where:

dI (cn k)

dxt
= I (cn < k xt > zt) I (cn + wtI (xt dxt zt) k) (16)

I cin k xt zt I cin wtI (xt + dxt > zt) < k :

That is, dI(cn k)
dxt

= 0, if an in�nitesimal change, dxt; does not change the individual�s

multidimensional poverty (or non-poverty) status. Otherwise dI(cn k)
dxt

= . Also:
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d D
d=1

wd
D

zd xnd
zd +

dxt
=

wt
Dzt

zt xnt
zt

1

I (zt > xnt) : (17)

That is, an in�nitesimal increase in xt decreases the sum of censored gaps
D
d=1

wd
D

zd xnd
zd +

if zt > xnt. Otherwise:
d
PD
d=1

wd
D

h
zd xnd

zd

i

+

dxt
= 0:

Considering (16) and (17) it is clear that:
dI(cn k)

PD
d=1

wd
D

h
zd xnd

zd

i

+

dxt
0 and that a

society is better o¤ the lowerM is. Therefore, as in the previous section, the distributional
conditions associated with (10) and (11) are also relevant forM , in the bivariate case. The
simplest cross-partial derivative is:

d2I (cn k) D
d=1

wd
D

zd xnd
zd +

dxtdxs
=

D

d=1

wd
D

zd xnd
zd +

d2I (cn k)

dxtdxs
(18)

dI (cn k)

dxt

ws
Dzs

zs xns
zs

1

I (zs > xns)

dI (cn k)

dxs

wt
Dzt

zt xnt
zt

1

I (zt > xnt)

+I (cn k)

d2 D
d=1

wd
D

zd xnd
zd +

dxtdxs

From (16) it is clear that dI(cn k)
dxs

0: It is also clear from (17) that
d2

PD
d=1

wd
D

h
zd xnd

zd

i

+

dxtdxs
=

0: Hence the fourth element of the right-hand side of (18) is equal to zero, and both the
third and the second element are non-negative. The �rst element, however, can take any

sign because it is the product of a non-negative sub-element, D
d=1

wd
D

zd xnd
zd +

, and

d2I(cn k)
dxtdxs

: In the bivariate case, d
2I(cn k)
dxtdxs

is very similar to the ordinal-variables formulation
in (9), with the di¤erence that, on the right-hand side, x needs to be replaced with dx and

the whole right-hand side must be multiplied by . Therefore: d2I(cn k)
dxtdxs

= 0 :

Consequently also
d2I(cn k)

PD
d=1

wd
D

h
zd xnd

zd

i

+

dxtdxs
= 0 :

Since the cross-partial derivative can take any sign, the reasoning of the previous section
leads to the conclusion that the �rst-order stochastic dominance condition for M N;
is very similar to the one for the multidimensional headcount and ordinal variables, i.e. (12):

11



Mi (X ; k; Z) Mj (X; k; Z) k [0; 2] ; (19)

R+0 wd R+

2

d=1

wd = 2; Z

F12 (x1; x2) ; F1; F2 0 x1; x2 [0; x1] [0; x2]

F12 (x1; x2) ; F 1; F 2 0 x1; x2 [0; x2] [0; x2]

According to condition (19), multidimensional poverty in society i is never higher than
in j, as measured by any member of the Alkire-Foster family in the bivariate case, if and
only if the joint cumulative density function of i is never above that of j, and the joint
survival function of i is never below that of j, for all choices of speci�c poverty lines, weights,
multidimensional poverty cut-o¤s and values for the parameters.

The problem with three or more variables

The above results cannot be extended to the case of three or more variables, unless inden-
ti�cation of the poor is undertaken either using the intersection or the union approach. In
this section, I show why the results cannot be extended to several variables and intermediate
identi�cation approaches. In the next two sections I show why and how the approach is
applicable to any multivariate distribution as long as the extreme identi�cation approaches
are considered.
The reason why the results are not applicable to cases of three, or more, variables (save

the two mentioned expections) is that with more than two variables, the multivariate- version
of (10) and (11), for �rst-order dominance conditions, require checking the signs of all cross-
partial derivatives involving all combinations of variables (i.e. including three and more
variables). Existing multivariate conditions that work on cumulative and survival functions
can handle any sign of cross-partial derivatives involving even numbers of variables. However,
for odd numbers of variables (e.g. 1, 3, 5, etc.) the conditions only apply to non-negative
cross-partial derivatives (or non-positive, in the case of poverty functions). This is clear by
examining the multivariate versions of (10) and (11):18

18The equivalent equations for ordinal variables are very similar. The cumulative and survival density
functions need to be replaced by cumulative and survival multinomial probabilities, plus some minor adjust-
ments. See Yalonetzky (2010).
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W =
D

d=1

xd

0

Ud (xd; : : : ; xs=d Fddxd (20)

+
D 1

d=1

D

s=d+1

xs

0

xd

0

Uds (xd; xs; : : : ; xt=s;d Fds (xd; xs) dxddxs

D 2

d=1

D 1

s=d+1

D

t=s+1

xt

0

xs

0

xd

0

Udst (xd; xs; xt; : : : ; xu=d;s;t Fdst (xd; xs; xt) dxddxsdxt

+( 1)D
hD

0

h1

0

U1:::D F (x1; : : : ; xD) dx1 : : : dxD

and:

W =
D

d=1

xd

0

Ud (xd; 0; : : : ; Fddxd (21)

+
D 1

d=1

D

s=d+1

xs

0

xd

0

Uds (xd; xs; 0; : : : ; Fds (xd; xs) dxddxs

+
D 2

d=1

D 1

s=d+1

D

t=s+1

xt

0

as

0

ad

0

Udst (xd; xs; xt; 0; : : : ; Fdst (xd; xs; xt) dxddxsdxt

+
hD

0

h1

0

U1:::D F 12:::D (x1; : : : ; xD) dx1 : : : dxD

where the notation is the same as in (10) and (11).19 A condition associated with
F (x1; : : : ; xD) ; : : : ; Fdst (xd; xs; xt) ; : : : Fd 0 x1; : : : ; xD [0; x1] : : : [0; xD], requires

that the cross-partial derivatives alternate signs starting with Ud (xd; : : : ; xs=d) 0, followed
by Uds (xd; xs; : : : ; xt=d;s) 0, and so on until U1:::D 0 if D is an even number, or U1:::D 0
otherwise. An alternative condition, associated with F (x1; : : : ; xD) ; : : : ; Fdst (xd; xs; xt) ; : : : F d
0 x1; : : : ; xD [0; x1] : : : [0; xD]; requires that all cross-partial derivatives be non-negative.
A third condition stems from the merger of the �rst two distributional conditions. If
the two �rst conditions are met, then the comparison, W , is robust for all individual
welfare functions U , characterized by weak increasing monotonicity with respect to each
variable, (Ud (xd; : : : ; xs=d) 0 d) and by positively (or zero) signed cross-partial deriv-
atives for odd numbers of variables. Hence, for the conditions stemming from (20) and
(21) to be suitable for the derivation of multivariate versions of (12) and (19), it is nec-
essary that the odd cross-partial derivatives of both I (cn k) (in the ordinal case) and

I (cn k) D
d=1

wd
D

zd xnd
zd +

(in the continuous case) be non-positive (because it is a

19The result (20) has been shown by Crawford (2005), although it was alluded to Hadar and Russell (1974).
The result (21) is a simple multidimensional extension of the three dimensional derivation by Anderson
(2008).
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poverty function). By examining the simplest cross-partial derivatives it is easy to realize
that the conditions are not suitable. First, the multivariate equivalent of (8), i.e. the partial
derivative is non-positive:

I (cn k)

xd
= (22)

I (cn < k xd > zd) I (cn + wdI (xd xd zd) k)

I (cn k xd zd) I (cn wdI (xd xd > zd) < k)

The derivative (22) does not pose any problem. The multivariate equivalent of (9) is
more complicated (because it depends not just on the two di¤erentiation variables). It can
also take any sign:

I2 (cn k)

xd xs
(23)

= I (cn < k xd > zd xs > zs) I (cn + wdI (xd xd zd) < k cn + wsI (xs xs zs) < k)

I (cn + wdI (xd xd zd) + wsI (xs xs zs) k)

+I (cn < k xd > zd xs < zs) I (cn + wdI (xd xd zd) k)

I (cn + wdI (xd xd zd) wsI (xs xs > zs) < k)

+I (cn < k xd < zd xs > zs) I (cn + wsI (xs xs zs) k)

I (cn wdI (xd xd > zd) + wsI (xs xs zs) < k)

I (cn k xd < zd xs < zs) I (cn wdI (xd xd > zd) k cn wsI (xs xs > zs) k)

I (cn wdI (xd xd > zd) wsI (xs xs > zs) < k)

I (cn k xd < zd xs > zs) I (cn wdI (xd xd > zd) < k)

I (cn wdI (xd xd > zd) + wsI (xs xs zs) k)

I (cn k xd > zd xs < zs) I (cn wsI (xs xs > zs) < k)

I (cn + wdI (xd xd zd) wsI (xs xs > zs) k)

With some further manipulation one can show that I3(cn k)
xd xs xt

can also take any sign (not

just non-positive). Hence neither (20) nor (21) provide suitable dominance conditions for the

class of poverty functions based on I (cn k) : Likewise, in the case of I (cn k) D
d=1

wd
D

zd xnd
zd +

the cross-partial derivative involving three variables is:

14



d3I (cn k) D
d=1

wd
D

zd xnd
zd +

dxtdxsdxr
=

D

d=1

wd
D

zd xnd
zd +

d3I (cn k)

dxtdxsdxr
(24)

d2I (cn k)

dxtdxs

wr
Dzr

zr xnr
zr

1

I (zr > xnr)

dI2 (cn k)

dxtdxr

ws
Dzs

zs xns
zs

1

I (zs > xns)

dI2 (cn k)

dxsdxr

wt
Dzt

zt xnt
zt

1

I (zt > xnt)

Since any of the three pairwise cross-partial derivatives in (24), as well as d3I(cn k)
dxtdxsdxr

, can
take any sign, then already the odd cross-partial derivative with three variables can also take
any sign. Hence the aforementioned dominance conditions are not applicable to the Alkire-
Foster measures when more than two variables are considered together with indenti�cation
approaches di¤erent from either intersection or union. The next sections explain why similar
conditions are suitable for the two extreme forms of identi�cation.

The peculiar case of the union approach

The following is an interesting result among members of the Alkire-Foster family:
M (X; min wd ; Z) = M (X ; 0; Z) R+0 . That is, the measurement of poverty

using the Alkire-Foster family under the union approach (i.e. considering as multidimen-
sionally poor anybody who is poor in at least one variable) is equal to the weighted average
of all speci�c poverty gaps across the population:

M (X ; 0; Z) =
1

N

N

n=1

D

d=1

wd
D

zd xnd
zd +

R+0 : (25)

Now notice that:

d D
d=1

wd
D

zd xnd
zd +

dxt
=

wt
Dzt

zt xnt
zt

1

+

(26)

d2 D
d=1

wd
D

zd xnd
zd +

dxtdxs
= 0

That is, the cross-partial derivatives are all equal to zero. In this situation a �rst-order
dominance condition can be derived without recourse to either the joint cumulative density
or the joint survival functions. Only the marginal distributions matter. In other words, the
way the variables are associated in the compared populations is irrelevant for the dominance
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conditions.20 Considering (20) and (21), a �rst-order dominance condition for M (X; 0; Z)
is:

Mi (X; 0; Z) Mj (X; 0; Z) ; R+0 (27)

wd R+

D

d=1

wd = D; Z Fd 0 x1; : : : ; xD [0; x1] : : : [0; xD]

Finally, since M (X; min wd ; Z) = M (X; 0; Z) N, then condition (27) applies
to M (X; min wd ; Z) : Thus, conditions from (20) and (21) are applicable to the union
approach. One just needs to set all the cross-partial derivatives equal to zero and notice that
it does not make a di¤erence to use the univariate cumulative distributions or the univari-
ate survival functions. The �rst-order dominance condition requires testing for �rst-order
dominance over each variable separately and declaring dominance only when one society
dominates another one in each and every variable, independently.

The multidimensional headcount

In the case of the multidimensional headcount, a similar condition ensues, because notice
that the cross-partial derivatives of I (cn k) are also zero for the union approach. In this
approach, I (cn k) = I (cn min wd ) = I ( s xns < zs) : Hence, in the ordinal case:

I ( s xns < zs)

xs
= I (xns > zs) I (xns xs < zs) I (xns < zs) I (xns xs > zs)

(28)

Then, clearly,
2I( s xns<zs)

xs xt
= 0, and so all the other cross-partial derivatives are equal to

zero.21 Hence, using (20) (or (21)) the following condition is derived for the multidimensional
headcount, using the union approach:

1

N i

Ni

n=1

I cin min wd
1

N j

Nj

n=1

I cjn min wd ; (29)

wd R+

D

d=1

wd = D; Z Fd (xd) 0 xd [0; xd]

The peculiar case of the intersection approach

In the case of the intersection approach: I (cn = D) = I ( s : xns < zs) :Then, in the ordinal
case:
20This is, by the way, the key feature of the fourth �rst-order dominance condition that can be derived for

D variables; namely, ALEP neutrality.
21In the continuous case the di¤erences, , in (28) are replaced by di¤erential numbers, e.g. dxns, and

the right-hand side is multiplied by .
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I ( s : xns < zs)

xs
= I ( t = s : xnt < zt) (30)

[I (xns > zs) I (xns xs < zs) + I (xns < zs) I (xns xs > zs)]

I2 ( s : xns < zs)

xs xr
= I ( t = s; r : xnt < zt) (31)

[I (xnr > zr) I (xnr xr < zr) + I (xnr < zr) I (xnr xr > zr)]

[I (xns > zs) I (xns xs < zs) + I (xns < zs) I (xns xs > zs)]

By di¤erentiating I2( s:xns<zs)
xs xr

further with respect to the remaining variables it is easy
to spot the pattern whereby, in the intersection approach, the cross-partial di¤erences al-
ternate signs. The odd derivatives have non-positive signs and the even derivatives have
non-negative signs. Hence the poverty-function equivalent of condition (20) applies to the
multidimensional headcount under the intersection approach.The following condition is de-
rived:

1

N i

Ni

n=1

I cin = D
1

N j

Nj

n=1

I cjn = D ; wd R+

D

d=1

wd = D; Z (32)

F1;:::;D (x1; : : : ; xD) ; : : : ; Fd (xd) 0 x1; : : : ; xD [0; x1] : : : 0; xD]

Notice that for (32) to be ful�lled it su¢ces to show that F1;:::;D (x1; : : : ; xD) 0
x1; : : : ; xD [0; x1] : : : 0; xD] holds. Combining (32) with (7) yields the following condition
for the adjusted headcount ratio under the intersection approach:

F1;:::;D (x1; : : : ; xD) ; : : : ; Fd (xd) 0 x1; : : : ; xD [0; x1] : : : 0; xD]

M0
i (X;D;Z) M0

j (X ;D;Z) ; wd R+

D

d=1

wd = D; Z

The AF measures for continuous variables

In the case of AF indices for continuous variables:

M (X;D;Z) =
1

N

N

n=1

I ( s : xns < zs)
D

d=1

wd
D

zd xnd
zd +

R+0 : (33)

The partial and the pairwise cross-partial derivatives of I ( s : xns < zs)
D
d=1

wd
D

zd xnd
zd +

are in (15) and (18), respectively. When cin = D, (15) is non-positive and (18) is non-negative,
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because dI(cn=D)
dxd

is non-positive and d2I(cn k)
dxtdxs

is non-negative. The latter is non-negative be-

cause it has the same sign as (31).22 Then cross-partial derivatives involving more variables

alternate sign. Odd cross-partial derivatives, like d3I(cn k)
dxtdxsdxr

; are non-positive and even deriv-
atives are non-negative. Hence the poverty-function equivalent of condition (20) applies to
the whole Alkire-Foster family for continuous variables under the intersection approach. The
following condition ensues:

Mi (X;D;Z) Mj (X;D;Z) ; R+0 wd R+

D

d=1

wd = D; Z (34)

F1;:::;D (x1; : : : ; xD) ; : : : ; Fd (xd) 0 x1; : : : ; xD [0; x1] : : : 0; xD]

Notice that for (34) to be ful�lled it su¢ces to show that F1;:::;D (x1; : : : ; xD) 0
x1; : : : ; xD [0; x1] : : : 0; xD] holds.

Concluding remarks

This paper builds on the work of Alkire and Foster (2010) and Lasso de la Vega (2009) in
order to derive, �rst, a �rst-order stochastic dominance conditions for poverty comparisons
using the multidimensional headcount ratio, in applications with two ordinal variables. When
ful�lled, these conditions ensure that the poverty comparison is robust to any poverty line,
any weighting of the variables and any choice of the multidimensional cut-o¤. Secondly, the
paper shows that similar conditions exist for the whole family of AF mesures, i.e. including
those measures that work with continuous variables. The conditions are stringent, but they
provide the maximum degree of robustness in poverty comparisons using these measures.
When three or more variables are considered, the traditional dominance conditions used

in this paper are not appropriate for poverty counting measures of the AF family, except when
extreme poverty identi�cation approaches are considered. The reason is that the conditions
do not contemplate the possibility that certain cross-partial derivatives may take di¤erent
signs, speci�cally, those that stem from di¤erentiating the individual poverty function with
respect to an odd number of variables. For intermediate identi�cation approaches, the odd
cross-partial derivatives of the AF family can take any sign. Hence traditional dominance
conditions are not applicable.

However, for the extreme identi�cation approaches, this paper shows that there are suit-
able dominance conditions for any number of variables. In the case of the union approach,
a country whose marginal distributions �rst-order dominate will not exhibit higher poverty
measured by any index of the AF family, including the multidimensional headcount ratio.
For the union approach, the joint distribution of variables is not necessary when testing for
�rst-order dominance. In the case of the intersection approach, a country whose cumulative
joint and marginal distributions �rst-order dominate will not exhibit higher poverty accord-
ing to any of the AF measures, including the headcount. In this particular case, dominance

22The di¤erence are between I2(8s:xns<zs)
xs xr

and d2I(8s:xns<zs)
dxtdxs

the di¤erential numbers and the in the
latter�s formula.
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over the joint distribution of all the variables involved su¢ces to ensure the full robustness
of the poverty comparison to changes in any of the parameters of the AF measures, including
the choice of family member (the value of ).

What�s left for poverty comparisons using AF measures, intermediate identi�cation ap-
proaches and several variables? In these circumstances, traditional dominance conditions
cannot ascertain robustness when ful�lled. However, by looking at (20) or (21), it is clear
that when they are not ful�lled (e.g. the joint cumulative or survival distributions cross),
ordinal poverty comparisons with the AF family, are not robust. Since one would ideally also
want conditions that ensure robustness, the latter assessment is not very satisfactory. Hence
pending research should explore alternative robustness criteria for ordinal poverty compar-
isons with counting measures like the AF family, beyond the traditional tools developed since
the seminal contribution of Atkinson and Bourguignon (1982).
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