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Abstract 
This chapter provides a systematic overview of the Alkire-Foster multidimensional measurement 
methodology with an emphasis on the Adjusted Headcount Ratio denoted  𝑀0 . The chapter is 
divided into seven sections. The first shows how this measure combines the practical appeal of 
the counting tradition with the rigor of the axiomatic one. The second sets out the identification 
of who is poor using the dual-cutoff approach, and the third outlines the aggregation method 
used to construct the Adjusted Headcount Ratio. In the fourth, we take stock and present the 
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main distinctive characteristics of the Adjusted Headcount Ratio, whereas the fifth section 
presents its useful, consistent partial indices or components. To illustrate, we present a case study 
using the global Multidimensional Poverty Index (MPI) in the sixth section. The final section 
presents the members of the AF class of measures that can be constructed in less common 
situations where data are cardinal. 
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5 The Alkire-Foster Counting Methodology 

This chapter provides a systematic overview of the multidimensional measurement 

methodology of Alkire and Foster (2007, 2011a), with an emphasis on the first measure of that 

class: the Adjusted Headcount Ratio or 𝑀0 . It builds on previous chapters, which 

demonstrated the importance of adopting a multidimensional approach (Chapter 1), 

introduced the general framework (Chapter 2), and reviewed the different alternative methods 

for multidimensional measurement and analysis (Chapter 3). Chapter 3 also highlighted the 

advantages of certain axiomatic measures that consider the joint distribution of deprivations 

and exhibit a transparent and predictable behaviour with respect to different types of 

transformations. The fourth chapter reviewed counting methods to identify the poor (Chapter 

4), which are frequently used in axiomatic measures. 

Why focus on the AF methodology and on 𝑀0 in particular? As argued in 1.3, we focus on the 

AF methodology for a number of technical and practical reasons. From a technical 

perspective, being an axiomatic family of measures, the AF measures satisfy a number of 

desirable properties introduced in section 2.5, detailed in this chapter. From a practical 

perspective, the AF family of measures uses the intuitive counting approach to identify the 

poor, and explicitly considers the joint distribution of deprivations. Among the AF measures, 

the 𝑀0  measure is particularly applicable due to its ability to use ordinal or binary data 

rigorously and because the measure and its consistent partial indices are intuitive. The 

technical and practical advantages of 𝑀0  make it a particularly attractive option to inform 

policy. 

It is worth noting from the beginning that the AF methodology is a general framework for 

measuring multidimensional poverty, although it is also suitable for measuring other 

phenomena (Alkire and Santos 2013). With the AF method, many key decisions are left to the 

user. These include the selection of the measure’s purpose, space, unit of analysis, dimensions, 

deprivation cutoffs (to determine when a person is deprived in a dimension), weights or values 

(to indicate the relative importance of the different deprivations), and poverty cutoff (to 

determine when a person has enough deprivations to be considered poor). This flexibility 

enables the methodology to have many diverse applications. The design of particular 

measures—which entail value judgements—is the subject of Chapter 6. 
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As described in section 2.2.2, the methodology for measuring multidimensional poverty 

consists of an identification and an aggregation method (Sen 1976). This chapter first describes 

how the AF methodology identifies people as poor using a ‘dual-cutoff’ counting method, 

standing on the shoulders of a long tradition of counting approaches that have been used in 

policy making (Chapter 4). The aggregation method builds on the unidimensional axiomatic 

poverty measures and directly extends the Foster–Greer–Thorbecke (1984) class of poverty 

measures introduced in section 2.1. The main focus of this chapter is the Adjusted Headcount 

Ratio (𝑀0), which reflects the incidence of poverty and the intensity of poverty, capturing the 

joint distribution of deprivations. The chapter shows how to ‘drill down’ into 𝑀0 in order to 

unfold the distinctive partial indices that reveal the intuition and layers of information 

embedded in the summary measure, such as poverty at subgroup levels and its composition by 

dimension.  Examples illustrate the methodology and also present standard tables and graphics 

that are used to convey results. 

This chapter proceeds as follows. Section 5.1 presents the overview and practicality of the AF 

class of poverty measures, focusing especially on the Adjusted Headcount Ratio. Section 5.2 

sets out the identification of who is poor using the dual-cutoff approach. Section 5.3 outlines 

the aggregation method used to construct the Adjusted Headcount Ratio. Section 5.4 presents 

the main distinctive characteristics of the Adjusted Headcount Ratio and section 5.5 presents 

its useful, consistent partial indices or components. We present a case study of the Adjusted 

Headcount Ratio using the global Multidimensional Poverty Index in section 5.6. Section 5.7 

presents the members of the AF class of measures that can be constructed in the less common 

situations where data are cardinal, along with their properties and partial indices. Finally, 

section 5.8 reviews some empirical applications of the AF methology. 

5.1  The AF Class of Poverty Measures: Overview and Practicality 

The AF methodology of multidimensional poverty measurement creates a class of measures 

that both draws on the counting approach and extends the FGT class of measures in natural 

ways. Before proceeding with a more formal description of the AF methodology, we first 

provide a stepwise synthetic and intuitive presentation of how to obtain the Adjusted 

Headcount Ratio (𝑀0), which is our focal measure. We also introduce the Adjusted Poverty 

Gap (𝑀1) and the Adjusted Squared Poverty Gap (or FGT) Measure (𝑀2). For clarity, we 
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distinguish the steps that belong to the identification step and those that belong to the 

aggregation step. 

One constructs these 𝑀𝛼  measures as follows: 

Identification 

1. Defining the set of indicators which will be considered in the multidimensional 
measure. Data for all indicators need to be available for the same person. 

2. Setting the deprivation cutoffs for each indicator, namely the level of achievement 
considered sufficient (normatively) in order to be non-deprived in each indicator. 

3. Applying the cutoffs to ascertain whether each person is deprived or not in each 
indicator. 

4. Selecting the relative weight or value that each indicator has, such that these sum to 
one.1  

5. Creating the weighted sum of deprivations for each person, which can be called his or 
her ‘deprivation score’. 

6. Determining (normatively) the poverty cutoff, namely, the proportion of weighted 
deprivations a person needs to experience in order to be considered 
multidimensionally poor, and identifying each person as multidimensionally poor or 
not according to the selected poverty cutoff. 

Aggregation 

7. Computing the proportion of people who have been identified as multidimensionally 
poor in the population. This is the headcount ratio of multidimensional poverty 𝐻, 
also called the incidence of multidimensional poverty. 

8. Computing the average share of weighted indicators in which poor people are 
deprived. This entails adding up the deprivation scores of the poor and dividing them 
by the total number of poor people. This is the intensity of multidimensional poverty 
(𝐴), also sometimes called the breadth of poverty. 

9. Computing the 𝑀0  measure as the product of the two previous partial indices: 
𝑀0 = 𝐻 × 𝐴 . Analogously, 𝑀0  can be obtained as the mean of the vector of 
deprivation scores, which is also the sum of the weighted deprivations that poor 
people experience, divided by the total population. 

When all indicators are ratio scale, one may also compute 𝑀1 and 𝑀2 as follows: 

                                                 

1 We are following the ‘normalized’ notation here; for other notations see section 5.2.2  and Box 5.7. 
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10. Computing the average poverty gap across all instances in which poor persons are 
deprived, 𝐺 . This entails computing the normalized deprivation gap as defined in 

equation (2.2): (𝑔𝑖𝑗 = 𝑧𝑗−𝑥 𝑖𝑗
𝑧𝑗

 ) for each person and indicator. The normalized gap is the 

difference between the deprivation cutoff and the poor person’s achievement for each 
indicator, divided by its deprivation cutoff. If a person’s achievement does not fall 
short of the deprivation cutoff, the normalized gap is zero. The average poverty gap is 
the mean of poor people’s weighted normalized deprivation gaps in those dimensions 
in which poor people are deprived and is one of the partial indices. This depth of 
multidimensional poverty is denoted by 𝐺. 

11. Computing the 𝑀1  measure as the product of three partial indices: 𝑀1 = 𝐻 × 𝐴 × 𝐺. 
Analogously, 𝑀1  can be obtained as the sum of the weighted deprivation gaps that 
poor people experience, divided by the total population. 

12. Computing the average severity of deprivation across all instances in which poor 
persons are deprived, 𝑆. This entails computing the squared deprivation gap, that is, 
squaring each normalized gap computed in step 10. The average severity of deprivation 
is the mean of poor people’s weighted squared deprivation gaps in those dimensions in 
which they are deprived. This is the severity of multidimensional poverty, 𝑆. 

13. Computing the 𝑀2  measure as the product of the following partial indices: 𝑀2 = 𝐻 ×
𝐴 × 𝑆 . Analogously, 𝑀2  can be obtained as the sum of the weighted squared 
deprivation gaps that poor people experience, divided by the total population. 

Note that in all three cases (𝑀0 , 𝑀1 and 𝑀2) the deprivations experienced by people who have 

not been identified as poor (i.e. those whose deprivation score is below the poverty cutoff) are 

censored, hence not included; this censoring of the deprivations of the non-poor is consistent 

with the property of ‘poverty focus’ which—analogous to the unidimensional case—requires a 

poverty measure to be independent of the achievements of the non-poor. For further 

discussion see Alkire and Foster (2011a). 

These three measures of the AF family, as well as any other member, satisfy many of the 

desirable properties introduced in section 2.5. Several properties are key for policy. The first is 

decomposability, which allows the index to be broken down by population subgroup (such as 

region or ethnicity) to show the characteristics of multidimensional poverty for each group. All 

AF measures satisfy population subgroup decomposability. So the poverty level of a 

society—as measured by any 𝑀𝛼—is equivalent to the population-weighted sum of subgroup 

poverty levels, where subgroups are mutually exclusive and collectively exhaustive of the 

population.  
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All AF measures can also be unpacked to reveal the dimensional deprivations contributing the 

most to poverty for any given group. This second key property—post-identification 

dimensional breakdown (section 2.2.4) — is not available with the standard headcount ratio 

and is particularly useful for policy. 

The AF measures also satisfy dimensional monotonicity, meaning that whenever a poor 

person ceases to be deprived in a dimension, poverty decreases. The headcount ratio does not 

satisfy this.  Dimensional monotonicity and breakdown both use the partial index of intensity. 

A few comments on the AF class before we turn to the final key property for policy. All AF 

measures also have intuitive interpretations. The Adjusted Headcount Ratio(𝑀0) reflects the 

proportion of weighted deprivations the poor experience in a society out of the total number 

of deprivations this society could experience if all people were poor and were deprived in all 

dimensions. The Adjusted Poverty Gap  𝑀1  reflects the average weighted deprivation gap 

experienced by the poor out of the total number of deprivations this society could experience. 

The Adjusted Squared Poverty Gap Measure 𝑀2 reflects the average weighted squared gap or 

poverty severity experienced by the poor out of the total number of deprivations this society 

could experience. In all cases, the term ‘adjusted’ refers to the fact that all measures 

incorporate the intensity of multidimensional poverty—which is key to their properties. 

Additionally, while each AF measure offers a summary statistic of multidimensional poverty, 

they are related to a set of consistent and intuitive partial indices, namely, poverty incidence 

(𝐻), intensity (𝐴), and a set of subgroup poverty estimates and dimensional deprivation indices 

(which in the case of the 𝑀0  measure are called censored headcount ratios) and their 

corresponding percent contributions. Each 𝑀𝛼  measure can be unfolded into an array of 

informative indices. 

Among the AF class of measures, the 𝑀0 measure is particularly important because it can be 

implemented with ordinal data. This is critical for real-world applications. It is relevant when 

poverty is viewed from the capability perspective, for example, since many key functionings 

are commonly measured using ordinal variables. The 𝑀0  measure satisfies the ordinality 

property introduced in section 2.5.1. This means that for any monotonic transformation of the 

ordinal variable and associated cutoff, overall poverty as estimated by 𝑀0  will not change. 

Moreover, 𝑀0 has a natural interpretation as a measure of ‘unfreedom’ and generates a partial 
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ordering that lies between first- and second-order dominance (Chapter 6). Because of its 

intuitiveness and practicality, this book mainly focuses on 𝑀0. 

The remaining sections present the AF method more precisely yet, we hope, intuitively. 

5.2 Identification of the Poor: The Dual-Cutoff Approach 

Poverty measurement requires some identification function, which determines whether each 

person is to be considered poor. The unidimensional form of identification, discussed in 

section 2.2.1,  entails a host of assumptions that restrict its applicability in practice and its 

desirability in principle.2 From the perspective of the capability approach, a key conceptual 

drawback of viewing multidimensional poverty through a unidimensional lens is the loss of 

information on dimension-specific shortfalls; indeed, aggregation before identification 

converts dimensional achievements into one another without regard to dimension-specific 

cutoffs. In situations where dimensions are intrinsically valued and dimensional deprivations 

are inherently undesirable, there are good reasons to look beyond a unidimensional approach 

to identification methods that focus on dimensional shortfalls. 

In the multidimensional measurement setting, where there are multiple variables, identification 

is a substantially more challenging exercise. As explained in section 2.2.2, a variety of methods 

can be used for identification in multidimensional poverty measurement. Here we follow a 

censored achievement approach. This approach first requires determining who is deprived 

in each dimension by comparing the person’s achievement against the corresponding 

deprivation cutoff and thus considering only deprived achievements (and ignoring—or 

censoring—achievements above the deprivation cutoff) for the identification of the poor. One 

prominent method used within the censored achievement approach is the counting 

approach, which is precisely the identification approach followed in the AF methodology, 

among others (Chapter 4). 

                                                 

2 One common assumption is that prices exist and are adequate normative weights for the dimensions; however, 
as noted by Tsui (2002), this assumption is questionable. Prices may be adjusted to reflect externalities, but 
exchange values do not and ‘indeed cannot give…interpersonal comparisons of welfare or advantage’ (Sen 1997: 208). 
Subjective poverty lines cannot replace prices for all attributes, and markets may be missing or imperfect 
(Bourguignon and Chakravarty 2003; Tsui 2002). In practice, income may not be translated into basic needs 
(Ruggeri Laderchi, Saith, and Stewart 2003; Sen 1979). Finally, aggregating across dimensions entails strong 
assumptions regarding cardinality and comparability, which are impractical when data are ordinal (Sen 1997). 
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As we have seen, a counting approach first identifies whether a person is deprived or not in 

each dimension and then identifies a person as poor according to the number (count) of 

deprivations she experiences. Note that ‘number’ here has a broad meaning as dimensions may 

be weighted differently. As reviewed in Chapter 4, the use of a counting approach to 

identification in multidimensional poverty measurement is not new. However, the value added 

of the AF methodology is threefold. In the first place, the AF methodology has formalized the 

counting approach to identification into a dual-cutoff approach, clarifying the requirement of 

two distinct sets of thresholds to define poverty in the multidimensional context. One is the 

set of deprivation cutoffs, which identify whether a person is deprived with respect to each 

dimension. Then, a (single) poverty cutoff delineates how widely deprived a person must be 

in order to be considered poor. 

Second, as a consequence of using a dual-cutoff approach, the AF methodology considers the 

joint distribution of deprivations at the identification step and not just at the aggregation 

step, as previous methodologies did (almost all non-counting methodologies used the union 

criterion). Third, the AF methodology has integrated the counting approach to identification 

with an aggregation methodology that extends the unidimensional FGT measures, overcoming 

the limitations of the headcount ratio (which most counting methods used) yet allowing 

intuitive interpretations.3 

Thus the AF methodology draws together the counting traditions – widely known for their 

practicality and policy appeal – and the widely used FGT class of axiomatic measures in order 

to assess multidimensional poverty, and stands on the shoulders of both traditions. 

5.2.1 The Deprivation Cutoffs: Identifying Deprivations and Obtaining Deprivation 

Scores 

Bourguignon and Chakravarty (2003) contend that ‘a multidimensional approach to poverty 

defines poverty as a shortfall from a threshold on each dimension of an individual’s 

wellbeing’.4  Following them and the plethora of counting methods reviewed in Chapter 4, the 

                                                 

3 The use of the word methodology when referring to AF indicates that it comprises both an identification and an 
aggregation method. 
4 See also Chakravarty et al. (1998) and Tsui (2002) on this point. 
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AF measures use a deprivation cutoff for each dimension, defined and applied as described in 

this section. 

As introduced in section 2.2, the base information in multidimensional poverty measurement 

is typically represented by an 𝑛 × 𝑑  dimensional achievement matrix 𝑋 , where 𝑥𝑖𝑗  is the 

achievement of person 𝑖 in dimension 𝑗. For simplicity, as done in section 2.2, it is assumed 

that achievements can be represented by non-negative real numbers (i.e. 𝑥𝑖𝑗 ∈ ℝ+) and that 

higher achievements are preferred to lower ones. 

For each dimension 𝑗, a threshold 𝑧𝑗  is defined as the minimum achievement required in order 

to be non-deprived. This threshold is called a deprivation cutoff. Deprivation cutoffs are 

collected in the 𝑑-dimensional vector 𝑧 = (𝑧1, … , 𝑧𝑑). Given each person’s achievement in 

each dimension 𝑥𝑖𝑗 , if the ith person’s achievement level in a given dimension 𝑗 falls short of 

the respective deprivation cutoff 𝑧𝑗 , the person is said to be deprived in that dimension (that 

is, if 𝑥𝑖𝑗  <  𝑧𝑗 ). If the person’s level is at least as great as the deprivation cutoff, the person is 

not deprived in that dimension. 

As Chapter 2 introduced, from the achievement matrix 𝑋 and the vector of deprivation cutoffs 

𝑧, one can obtain a deprivation matrix 𝑔0 such that 𝑔𝑖𝑗
0 = 1 whenever 𝑥𝑖𝑗  <  𝑧𝑗  and 𝑔𝑖𝑗

0 = 0, 

otherwise, for all 𝑗 = 1, … , 𝑑 and for all 𝑖 = 1, … , 𝑛. In other words, if person 𝑖 is deprived in 

dimension 𝑗, then the person is assigned a deprivation status value of 1, and 0 otherwise. 

The matrix 𝑔0  summarizes the deprivation status value of all people in all dimensions of 

matrix 𝑋 . The vector 𝑔𝑖⋅
0  summarizes the deprivation status values of person 𝑖  in all 

dimensions, and the vector 𝑔⋅𝑗
0  summarizes the deprivation status values of all persons in 

dimension 𝑗. 

The deprivation in each of the 𝑑  dimensions may not have the same relative importance. 

Thus, a vector 𝑤 = (𝑤1,… , 𝑤𝑑) of weights or deprivation values is used to indicate the 

relative importance of a deprivation in each dimension. The deprivation value attached to 

dimension 𝑗 is denoted by 𝑤𝑗 > 0. If each deprivation is viewed as having equal importance, 

then this is a benchmark ‘counting’ case. If deprivations are viewed as having different degrees 

of importance, general weights are applied using a weighting vector whose entries vary, with 

higher weights indicating greater relative value. 
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Intricate weighting systems create challenges in interpretation, so it can be useful to choose the 

dimensions such that the natural weights among them are roughly equal or else to group 

dimensions into categories that have roughly equal weights (Atkinson 2003). The deprivation 

values affect identification because they determine the minimum combinations of deprivations 

that will identify a person as being poor. They also affect aggregation by altering the relative 

contributions of deprivations to overall poverty (for more on weights see Chapter 6). Yet 

importantly the deprivation values do not function as weights that govern trade-offs between 

dimensions for every possible combination of ratio-scale achievement levels, as they do in a 

traditional composite index.  Because each deprivation status value is binary, the role of 

deprivation values differs from the role of weights in traditional composite indices. 

Based on the deprivation profile, each person is assigned a deprivation score that reflects the 

breadth of each person’s deprivations across all dimensions. The deprivation score of each 

person is the sum of her weighted deprivations. Formally, the deprivation score is given by 

𝑐𝑖 =  𝑤𝑗𝑔𝑖𝑗
0𝑑

𝑗=1 =  𝑔 𝑖𝑗0𝑑
𝑗=1 . The score increases as the number of deprivations a person 

experiences increases, and reaches its maximum when the person is deprived in all dimensions. 

A person who is not deprived in any dimension has a deprivation score equal to 0. We denote 

the deprivation score of person 𝑖 by 𝑐𝑖  and the column vector of deprivation scores for all 

persons by 𝑐 =  𝑐1,… , 𝑐𝑛 . 

5.2.2  Alternative Notation and Presentation 

Distinct notational presentations can be employed for the weights, deprivation scores, 

deprivation score vector, poverty cutoff, poverty measures, and partial indices. Substantively, 

alternative presentations are identical in that they each identify precisely the same persons as 

poor and generate the same poverty measure value and identical partial indices. What differ are 

the numerical values of weights, deprivation scores, and poverty cutoff. For didactic purposes 

we explain the main options so as to avoid confusion among researchers using different 

notational conventions. 

Alternative notations arise from two decisions. The first decision is whether to define weights 

that sum to one, i.e.  𝑤𝑗𝑗 = 1, or whether weights sum to the number of dimensions under 

consideration,  𝑤𝑗 = 𝑑𝑗 . We refer to the first as normalized weights and to the second as 
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non-normalized or numbered weights. The normalized weight of a dimension reflects the 

share (or percentage) of total weight given to a particular dimension. The deprivation score 

then shows the percentage of weighted dimensions in which a person is deprived and lies 

between 0 and 1. In the numbered case, deprivation scores range between 0 and 𝑑. If person 𝑖 
is deprived in all dimensions, then 𝑐𝑖 = 𝑑. Depending on the weighting structure, one of these 

options may be more intuitive than the other. For example, if dimensions are equally weighted, 

the deprivation count vector shows the number of dimensions in which each person is 

deprived. Thus, while in the normalized case one may state that a person is deprived in 43% of 

the weighted dimensions, in the non-normalized case one states that a person is deprived in 

three out of seven dimensions, which is more intuitive. However, if dimensions are not equally 

weighted, as is common in practice, normalized weights may be more intuitive. Suppose there 

are seven dimensions and a person is deprived in two dimensions having weights of 25% and 

10%, respectively. Their numbered deprivation score would be 2.45 = (0.25*7 + 0.10*7). This 

same situation could be communicated more intuitively by saying that this person is deprived 

in 35% of the weighted dimensions. 

The second decision is whether to express the formulas using the deprivation matrix 𝑔0 and 

the (explicitly separate) weighting vector 𝑤 in an explicit way, or whether to express them in 

terms of a weighted deprivation matrix denoted by 𝑔 0 such that 𝑔 𝑖𝑗0 = 𝑤𝑗  if 𝑔𝑖𝑗
0 = 1 and 

𝑔 𝑖𝑗0 = 0  if 𝑔𝑖𝑗
0 = 0 . These two decisions lead to four possible—but totally equivalent—

notations, as detailed in Box 5.7. This chapter, and most of this book, uses normalized weights 

and expresses formulas using the deprivation matrix and the weight vector. We refer to this as 

Method I. Method II uses normalized weights with the weighted deprivation matrix. Method 

III uses non-normalized weights and expresses formulas using the deprivation matrix and the 

weight vector. Methods II and III are not further discussed in this chapter, but all the formulas 

are stated in Box 5.7. Finally, Method IV uses non-normalized weights and expresses the 

formulas using the weighted deprivation matrix, aligned with the notation used in Alkire and 

Foster (2011a), which is presented in Box 5.3, Box 5.6, and Box 5.7. What is particularly 

elegant about Method IV is that the AF measures can be expressed as the mean of the relevant 

censored deprivation matrix, as we shall elaborate subsequently. 



Alkire, Foster, Seth, Santos, Roche and Ballon  5: The Alkire-Foster Counting Methodology 

OPHI Working Paper 86  www.ophi.org 11 

5.2.3  The Second Cutoff: Identifying the Poor 

In addition to the deprivation cutoffs 𝑧𝑗 , the AF methodology uses a second cutoff or 

threshold to identify the multidimensionally poor. This is called the poverty cutoff and is 

denoted by 𝑘. The poverty cutoff is the minimum deprivation score a person needs to exhibit 

in order to be identified as poor. This poverty cutoff is implemented using an identification 

function 𝜌𝑘 , which depends upon each person’s achievement vector 𝑥𝑖⋅,   the deprivation 

cutoff vector 𝒛, the weight vector 𝑤, and the poverty cutoff 𝑘 . If the person is poor, the 

identification function takes on a value of 1; if the person is not poor, the identification 

function has a value of 0. Notationally, the identification function is defined as 𝜌𝑘(𝑥𝑖⋅; 𝑧) = 1 

if 𝑐𝑖 ≥ 𝑘 and 𝜌𝑘 𝑥𝑖⋅; 𝑧 = 0 otherwise. In other words, 𝜌𝑘  identifies person 𝑖 as poor when 

his or her deprivation score is at least 𝑘; if the deprivation score falls below the cutoff 𝑘, then 

person 𝑖 is not poor according to 𝜌𝑘 . Since 𝜌𝑘  is dependent on both the set of within-dimension 

deprivation cutoffs 𝑧  and the across-dimension cutoff 𝑘 , 𝜌𝑘  is referred to as the dual cutoff 

method of identification, or sometimes as the ‘intermediary’ method. 

Within the counting approach to identification, the most commonly used multidimensional 

identification strategy is the union criterion. 5  Most of the poverty indices discussed in 

Chapter 3 use the union criterion, by which a person 𝑖 is identified as multidimensionally poor 

if she is deprived in at least one dimension ( 𝑐𝑖 > 0 ). At the other extreme, another 

identification criterion is the intersection criterion, which identifies person 𝑖 as being poor 

only if she is deprived in all dimensions (𝑐𝑖 = 1). Both these approaches have the advantage of 

identifying the same people as poor regardless of the relative weights set on the dimensions. 

But the identification of who is poor in each case is exceedingly sensitive to the choice of 

dimensions. Also these strategies can be too imprecise for policy: in many applications, a 

union identification identifies a very large proportion of the population as poor, whereas an 

intersection approach identifies a vanishingly small number of people as poor. A natural 

middle-ground alternative is to use an intermediate cutoff level for 𝑐𝑖  that lies somewhere 

between the two extremes of union and intersection. 

                                                 

5 Atkinson (2003) applied the terms ‘union’ and ‘intersection’ in the context of multidimensional poverty. 
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The AF dual-cutoff identification strategy provides an overarching framework that includes 

the two extremes of union and intersection criteria and also the range of intermediate 

possibilities.6 Notice that 𝜌𝑘  includes the union and intersection methods as special cases. In 

the case of union, the poverty cutoff is less than or equal to the dimension with the lowest 

weight: 0 < 𝑘 ≤ min 𝑤1, … , 𝑤𝑑 .  Whereas in the case of intersection, the poverty cutoff 

takes its highest possible value of 𝑘 = 1 . In Box 5.1, we present different identification 

strategies using an example.   

Box 5.1 Different Identification Strategies: Union, Intersection, and Intermediate 
Cutoff 

Suppose there is a hypothetical society containing four persons and multidimensional poverty 
is analysed using four dimensions: standard of living as measured by income, level of 
knowledge as measured by years of education, nutritional status as measured by Body Mass 
Index (BMI), and access to public services as measured by access to electricity. The 4 × 4 
matrix 𝑋 contains the achievements of four persons in four dimensions. 

 
 

Income 
Years of 

Schooling 
Completed 

Malnourished 
Has Access to 

Improved 
Sanitation 

 
 

𝑋 = 

 700 14 No Yes  Person 1 

 300 13 No No  Person 2 

 400 3 Yes No  Person 3 

 800 1 No Yes  Person 4 

For example, the income of Person 3 is 400 Units; whereas Person 4’s is 800 Units. Person 1 
has completed fourteen years of schooling; whereas Person 2 has completed thirteen years of 
schooling. Person 3 is the only person who is malnourished of all four persons. Two persons 
in our example have access to improved sanitation. Thus, each row of matrix 𝑋 contains the 
achievements of each person in four dimensions, whereas each column of the matrix contains 
the achievements of four persons in each of the four dimensions. All dimensions are equally 
weighted and thus the weight vector is 𝑤 = (0.25, 0.25, 0.25, 0.25). The deprivation cutoff 
vector is denoted by 𝑧 = (500, 5, Not malnourished, Has access to improved sanitation), 
which is used to identify who is deprived in each dimension. The achievement matrix 𝑋 has 
three persons who are deprived (see the underlined entries) in one or more dimensions. 
Person 1 has no deprivation at all. 

Based on the deprivation status, we construct the deprivation matrix 𝑔0, where a deprivation 

                                                 

6 See Chapter 6 on the choice of 𝑘 (and 𝑧). 
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status score of 1 is assigned if a person is deprived in a dimension and a status score of 0 is 
given otherwise. 

  Dimensions  Deprivation Score Vector (𝒄) 

𝑔0 = 

 0 0 0 0  0 
 1 0 0 1  0.5 
 1 1 1 1  1 
 0 1 0 0  0.25 

        
𝑤 =  0.25 0.25 0.25 0.25   

The weighted sum of these status scores is the deprivation score (𝑐𝑖 ) of each person. For 
example, the first person has no deprivation and so the deprivation score is 0, whereas the 
third person is deprived in all dimensions and thus has the highest deprivation score of 1. 
Similarly, the deprivation score of the second person is 0.5  (= 0.25 + 0.25 ). The union 
identification strategy identifies a person as poor if the person is identified as deprived in any 
of the four dimensions. In that case, three of the four persons are identified as poor. On the 
other hand, an intersection identification strategy requires that a person is identified as poor if 
the person is deprived in all dimensions. In that case, only one of four persons is identified as 
poor in this case. An intermediate approach sets a cutoff between union and intersection, say, 
𝑘 = 0.5, which is equivalent to being deprived in two of four equally weighted dimensions. 
This strategy identifies a person as poor if the person is deprived in half or more of weighted 
dimensions, which in this case means that two of the four persons are identified as poor. 

 
The dual-cutoff identification strategy has a number of characteristics that deserve mention. 

First, it is ‘poverty focused’ in that an increase in an achievement level 𝑥𝑖𝑗  of a non-poor 

person leaves its value unchanged. Second, it is ‘deprivation focused’ in that an increase in any 

non-deprived achievement 𝑥𝑖𝑗 ≥ 𝑧𝑗  leaves the value of the identification function unchanged; 

in other words, a person’s poverty status is not affected by changes in the levels of non-

deprived achievements. This latter property separates 𝜌𝑘  from the ‘aggregate achievement’ 

approach which allows a higher level of achievement to compensate for lower levels of 

achievement in other dimensions. Finally, the dual-cutoff identification method can be 

meaningfully used with ordinal data, since a person’s poverty status is unchanged when an 

admissible transformation is applied to an achievement level and its associated cutoff. 

5.2.4  Dual-Cutoff Approach and Censoring 

The transition between the identification step and the aggregation step is most easily 

understood by examining a progression of matrices. There are two kinds of censoring, each of 
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which follows the application of the two kinds of cutoffs: deprivation and poverty. By 

applying the deprivation cutoffs to the achievement matrix 𝑋, we constructed the deprivation 

matrix 𝑔0 replacing each entry in 𝑋 that is below its respective deprivation cutoff 𝑧𝑗  with 1 

and each entry that is not below its deprivation cutoff with 0. This is the first censoring, 

because the achievements above their corresponding deprivation cutoff are converted into 0. 

The deprivation matrix provides a snapshot of who is deprived in which dimension. 

Next, the poor are identified by applying the poverty cutoff 𝑘 and thus a new matrix can be 

obtained from the deprivation matrix: the censored deprivation matrix, which is denoted by 

𝑔0(𝑘). Each element in 𝑔0(𝑘) is obtained by multiplying the corresponding element in 𝑔0 by 

the identification function 𝜌𝑘(𝑥𝑖⋅; 𝑧). Formally, 𝑔𝑖𝑗
0  𝑘 = 𝑔𝑖𝑗

0 × 𝜌𝑘(𝑥𝑖⋅; 𝑧) for all 𝑖 and for all 

𝑗 . What does this do?  If person 𝑖  is poor and thus 𝜌𝑘 𝑥𝑖⋅; 𝑧 = 1 , then the person’s 

deprivation status in every dimension remains unchanged and so does the row containing the 

deprivation information of the person. If person 𝑖 is not poor and thus 𝜌𝑘 𝑥𝑖⋅; 𝑧 = 0, then 

their deprivation status in every dimension becomes 0, which is equivalent to censoring the 

deprivations of persons who are not poor. This second censoring step is key to the AF 

methodology. As we will see in subsequent sections, the censored deprivation matrices 

embody the identification step and are the basic constructs used in the aggregation step. 

From the censored deprivation matrix, a censored deprivation score can be obtained. This 

applies the identification function to the original deprivation score vector used to identify the 

poor. The censored deprivation score of person 𝑖 is denoted by 𝑐𝑖(𝑘), and can be obtained as 

𝑐𝑖(𝑘) =  𝑤𝑗𝑔𝑖𝑗
0 (𝑘)𝑑

𝑗=1 . The censored deprivation score vector is denoted by 𝑐(𝑘). Note that 

by definition, 𝑐(𝑘) has been censored of all deprivations that are less than the value of 𝑘. 

Thus, when 𝑐𝑖 ≥ 𝑘 , then 𝑐𝑖 𝑘 = 𝑐𝑖  (deprivation score of the person), but if 𝑐𝑖 < 𝑘 , then 

𝑐𝑖 𝑘 = 0.7 

Note that there is one case where the second censoring is not relevant: when the poverty 

cutoff 𝑘  corresponds to the union approach, then any person who is deprived in any 

dimension is considered poor and the censored and original matrices are identical. 

                                                 

7 In the case of deprivation scores, the poverty cutoff fixes a minimum level of deprivations that identify poverty. 
This is in contrast to the unidimensional context, where a person is identified as poor if her achievement is below 
the poverty line. 
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Although the censored matrices are used to construct multidimensional poverty measures, the 

original deprivation matrix still provides useful information, as we shall see later in 

constructing ‘raw’ or uncensored deprivation headcount ratios by dimension and analysing 

their change over time. 

Before moving on to the aggregation step to create the Adjusted Headcount Ratio, let us 

provide an example of how to obtain the censored deprivation score vector from an 

achievement matrix in Box 5.2. 

Box 5.2 Obtaining the Censored Deprivation Score Vector from an Achievement 
Matrix 

Consider the 4 × 4 achievement matrix 𝑋 and the deprivation cutoff vector 𝑧 in Box 5.1. As 
earlier, each of the four dimensions receives a weight equal to 0.25 and weights sum to one. 
Assume in this case that a person is identified as poor if deprived in half or more of the four 
equally weighted dimensions, i.e. 𝑘 = 0.5. 

The achievement matrix 𝑋 has three persons who are deprived in one or more dimensions. 
Based on the deprivation status, a deprivation matrix 𝑔0 is constructed in which a deprivation 
status score of 1 is assigned if a person is deprived in a dimension and a status score of 0 is 
given otherwise. The weighted sum of these status scores yields the deprivation score of each 
person 𝑐𝑖 . 
Note that two persons (second and third) have deprivation scores that are greater than or 
equal to 0.5. They are considered to be poor (𝑐𝑖 ≥ 𝑘), and hence their entries in the censored 
deprivation matrix are the same as in the deprivation matrix. However, the fourth person has a 
single deprivation and hence is not poor. This single deprivation is censored in the censored 
deprivation matrix, which only displays the deprivations of the poor, as depicted below.8 

  Dimensions  Censored Deprivation 
Score (𝑐(𝑘)) 

𝑔0(𝑘) = 

 0 0 0 0  0 
 1 0 0 1  0.5 
 1 1 1 1  1 
 0 0 0 0  0 

        
𝑤 =  0.25 0.25 0.25 0.25   

 

 

                                                 

8 This example has an identical relative weight across dimensions; the general case admits a wide variety of 
identification approaches. For example, if one dimension had overriding importance and its relative weight was 
set above or equal to 𝑘, then any person deprived in that dimension would be considered poor. 
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5.3 Aggregation: The Adjusted Headcount Ratio 

The aggregation step of our methodology builds upon the FGT class of unidimensional 

poverty measures and likewise generates a parametric class of measures. Just as each FGT 

measure can be viewed as the mean of an appropriate vector built from the original data and 

censored using the poverty line, the Adjusted Headcount Ratio is the mean of the censored 

deprivation score vector: 

 
𝑀0 = 𝜇 𝑐 𝑘  =

1
𝑛 ×  𝑐𝑖(𝑘)

𝑛

𝑖=1

. (5.1) 

This section elaborates the Adjusted Headcount Ratio; the other measures in the AF class are 

presented in section 5.7. 

A second way of viewing 𝑀0  is in terms of partial indices—measures that provide basic 

information on a single aspect of poverty. The Adjusted Headcount Ratio, denoted as 

𝑀0(𝑋; 𝑧), can also be written as the product of two partial indices. The first partial index 𝐻 is 

the percentage of the population that is poor or the multidimensional headcount ratio or 

the incidence of poverty. The second index 𝐴 is the intensity of poverty. 

 𝑀0 = 𝐻 × 𝐴. (5.2) 

   

The headcount ratio or poverty incidence 𝐻 = 𝐻(𝑋; 𝑧) is the proportion of the population 

that is poor. It is defined as 𝐻 = 𝑞/𝑛, where 𝑞 is number of persons identified as poor using 

the dual-cutoff approach.9 

In turn, poverty intensity (𝐴) is the average deprivation score across the poor. Notice that 

the censored deprivation score 𝑐𝑖(𝑘) represents the share of possible deprivations experienced 

by a poor person 𝑖 . So the average deprivation score across the poor is given by 𝐴 =

 𝑐𝑖(𝑘)/𝑞𝑛
𝑖=1 . Like the poverty gap information in income poverty, this partial index conveys 

relevant information about multidimensional poverty, in that persons who experience 

                                                 

9 While informative, this measure is insufficient as a standalone index for two reasons. First, if a poor person 
becomes deprived in a new dimension, 𝐻  remains unchanged, violating the property of dimensional 
monotonicity. Second, 𝐻 cannot be further broken down to show how much each dimension contributes to 
poverty. 
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simultaneous deprivations in a higher  fraction of dimensions have a higher intensity of 

poverty and are poorer than others having a lower intensity. 

Thus, 𝑀0 is given by 

 
𝑀0 𝑋; 𝑧 = 𝜇 𝑐 𝑘  = 𝐻 × 𝐴 =

𝑞
𝑛 ×

1
𝑞 𝑐𝑖(𝑘)

𝑞

𝑖=1

=
1
𝑛 𝑐𝑖(𝑘)

𝑛

𝑖=1

=
1
𝑛  𝑤𝑗𝑔𝑖𝑗

0 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

. (5.3) 

As a simple product of the two partial indices 𝐻 and 𝐴, the measure 𝑀0  is sensitive to the 

incidence and the intensity of multidimensional poverty. It clearly satisfies dimensional 

monotonicity, since if a poor person becomes deprived in an additional dimension, then 𝐴 

rises and so does 𝑀0. Another interpretation of 𝑀0 is that it provides the share of weighted 

deprivations experienced by the poor divided by the maximum possible deprivations that 

could possibly be experienced if all people were poor and were deprived in all dimensions. 

Let us provide an example using the same censored deprivation matrix and the censored 

deprivation score vector as in Box 5.2. 

  Dimensions  𝑐(𝑘) 

𝑔0(𝑘) = 

 0 0 0 0  0 
 1 0 0 1  0.5 
 1 1 1 1  1 
 0 0 0 0  0 

The headcount ratio (𝐻) is the proportion of people who are poor, which is two out of four 

persons in the above matrix. The intensity (𝐴) is the average deprivation share among the 

poor, which in this example is the average of 0.5 and 1, i.e. equal to 0.75. It is easy to see that 

the multidimensional headcount ratio 𝑀0 = 𝐻 × 𝐴. In this example 𝐻 = 0.5 and 𝐴 = 0.75, 

so 𝑀0 = 0.375. It is straightforward to verify that 𝑀0 is the average of all elements in the 

censored deprivation score vector 𝑐(𝑘) , i.e. 𝑀0 = (0 + 0.5 + 1 + 0)/4 = 0.375 . 

Analogously, it is equivalent to compute 𝑀0 as the weighted sum of deprivation status values 

divided by the total number of people: 𝑀0 = (0.25 ∗ 2 + 0.25 ∗ 1 + 0.25 ∗ 1 + 0.25 ∗
2)/4 = 0.375. 

Box 5.3 An Alternative Presentation of the Adjusted Headcount Ratio Using Non-
Normalized Weights 

We have outlined the different expressions in terms of normalized weights (Method I in Box 
5.7). Let us provide an alternative approach for computing the Adjusted Headcount Ratio 
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when the weights are non-normalized such that 𝑤𝑗 > 0 and  𝑤𝑗
𝑑
𝑗=1 = 𝑑, i.e. adding to the 

total number of dimensions, following the notation presented in Alkire and Foster (2011a). In 
order to do so, we need to introduce the weighted deprivation matrix. From the deprivation 
matrix, a weighted deprivation matrix can be constructed by replacing the deprivation status 
value of a deprived person with the value or weight assigned to the corresponding dimension. 
Formally, we denote the weighted deprivation matrix by 𝑔 0 such that 𝑔 𝑖𝑗0 = 𝑤𝑗  if 𝑔𝑖𝑗

0 = 1 and 
𝑔 𝑖𝑗0 = 0 if 𝑔𝑖𝑗

0 = 0. Like the censored deprivation matrix, the censored weighted deprivation 
matrix 𝑔 0(𝑘) can be constructed such that 𝑔 𝑖𝑗0  𝑘 = 𝑔 𝑖𝑗0 × 𝜌𝑘(𝑥𝑖⋅; 𝑧) for all 𝑖 and all 𝑗. From 
the weighted deprivation matrix 𝑔 0(𝑘), the Adjusted Headcount Ratio can be defined as 

 𝑀0 = 𝜇(𝑔 0(𝑘)). (5.4) 

That is, 𝑀0  is the mean of the weighted censored deprivation matrix. Thus, the Adjusted 
Headcount Ratio is the sum of the weighted censored deprivation status values of the poor or 
  𝑔 𝑖𝑗0  𝑘 ,𝑑

𝑗=1
𝑞
𝑖=1  divided by the highest possible sum of weighted deprivation status values, 

or 𝑛 × 𝑑. 

Let us provide an example and show how the Adjusted Headcount Ratio is computed using 
this approach. Recall this deprivation matrix in Box 5.1. In this example, suppose the 
dimensions are unequally weighted and the weight vector is denoted by 𝑤 = (1.5, 1, 1, 0.5). 
Note that the weights sum to the number of dimensions. The weighted deprivation matrix 𝑔 0 
for this example can be denoted as follows: 
 

 

 

 

The deprivation score of each person is obtained by summing the weighted deprivations. For 
example, the third person is deprived in all dimensions and so receives a deprivation score 
equal to four. Similarly, the fourth person is deprived only in the second dimension, which is 
assigned a weight of 1 and so her deprivation score is 1. If the poverty cutoff is 𝑘 = 2, then 
only two persons are identified as poor. The censored weighted deprivation matrix can be 
obtained from the censored deprivation matrix as shown below. 

  Dimensions  Censored Deprivation 
Score (𝑐(𝑘)) 

𝑔 0(𝑘) = 

 0 0 0 0  0 
 1.5 0 0 0.5  2 
 1.5 1 1 0.5  4 
 0 0 0 0  0 

 

The sum of the weighted deprivation status values of the poor is six. The highest possible sum 

  Dimensions  Deprivation Score (𝑐) 

𝑔 0 = 

 0 0 0 0  0 
 1.5 0 0 0.5  2 
 1.5 1 1 0.5  4 
 0 1 0 0  1 
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of weighted deprivation status values is 4 × 4 = 16. Thus, 𝑀0 = 6/16 = 0.375. 

 

Box 5.4 An Alternative Notation of the Identification Function 

The application of the identification function can also be shown explicitly using another 
notation. An identification function 𝕀 takes a value of 1 if the indicated condition  𝑐𝑖 ≥ 𝑘   
is true for the 𝑖th person, and 0 otherwise, such that 𝕀 ⋅ = 1 if 𝑐𝑖 ≥ 𝑘 and 0 otherwise. 

In this notation, the identification function for the 𝑖th person is multiplied by the weighted 
deprivation score 𝑐𝑖  of the 𝑖th person. This censors (replaces by 0) the deprivations of the non-
poor. The sum of deprivation scores thus censored by the identification function, divided by 
𝑛 × 𝑑, provides the value of 𝑀0. 

 
𝑀0 𝑋; 𝑤, 𝑧, 𝑘 =

1
𝑛𝑑  𝕀 𝑐𝑖 ≥ 𝑘  𝑤𝑗𝑔𝑖𝑗

0  𝑥𝑖𝑗  
𝑑

𝑗=1

 
𝑛

𝑖=1

 (5.5) 

The headcount ratio or incidence of multidimensional poverty (𝐻) can also be expressed 
using this  alternative notation as 

 𝐻 𝑋; 𝑧, 𝑤, 𝑘 =
 𝕀 𝑐𝑖 ≥ 𝑘 𝑛

𝑖=1

𝑛 . (5.6) 

And the other partial indices such as intensity or the censored headcount ratios ℎ𝑗  introduced 
in section 5.5.3 can also be expressed using the identification function. 

 

5.4 Distinctive Characteristics of the Adjusted Headcount Ratio 

The 𝑀0 measure described in the previous section has several characteristics that merit special 

attention. First, it can be implemented with indicators of ordinal scale that commonly arise in 

multidimensional settings. In formal terms, 𝑀0 satisfies the ordinality property introduced in 

section 2.5. The ordinality property states that whenever variables (and thus their 

corresponding deprivation cutoffs) are modified in such a way that their scale is preserved—

what has been defined in section 2.3 as an admissible transformation—the poverty value 

should not change. 10 

                                                 

10 The set of the poor and the measured value of poverty are therefore meaningful in the sense of Roberts (1979). 
Note that M0 can also be applied to categorical variables (which do not necessarily admit a unique ordering across 
categories), so long as achievements can be separated into deprived and non-deprived sets. 



Alkire, Foster, Seth, Santos, Roche and Ballon  5: The Alkire-Foster Counting Methodology 

OPHI Working Paper 86  www.ophi.org 20 

The satisfaction of this property is a consequence of the combination of the identification 

method and the aggregation method. Because identification is performed with the counting 

approach, which dichotomizes achievements into deprived and non-deprived, equivalent 

transformations of the scales of the variables will not affect the set of people who are 

identified as poor. Note that the weights attached to deprivations are independent of the 

indicators’ scale and implemented after the deprivation status has been determined. This is 

clearly relevant for consistent targeting within policies or programmes using ordinal indicators. 

In turn, aggregation to obtain the 𝑀0 measure is performed using the censored deprivation 

matrix, which represents the deprivation status of each poor person in every dimension and 

also uses the 0–1 dichotomy. In the aggregation procedure, the deprivations of the poor are 

weighted, but, again, the weights are independent of the indicators’ scale and implemented 

after the deprivation status of the poor has been determined. Thus, equivalent transformations 

of the scales of the variables will not affect the aggregation of the poor and thus will not affect 

the overall poverty value. 

The fact that 𝑀0 satisfies the ordinality property is especially relevant when poverty is viewed 

from the capability perspective, since many key functionings are commonly measured using 

ordinal (or ordered categorical) variables. Virtually every other multidimensional methodology 

defined in the literature (including 𝑀1 , 𝑀2 , and, in general, the 𝑀𝛼  measures with 𝛼 > 0 , 

which are defined in section 5.6) do not satisfy the ordinality property. In the case of the 𝑀𝛼  

measures with 𝛼 > 0 , while the set of people identified as poor does not change under 

equivalent representations of the variables, the aggregation procedure will be affected as it is 

no longer based on the censored deprivation matrix but on a matrix that considers the depth 

of deprivation in each dimension. In other measures, the violation of ordinality occurs at the 

identification step. Moreover, for most measures, the underlying ordering is not even 

preserved, i.e. 𝑃 𝑋; 𝑧 > 𝑃(𝑋′ ; 𝑧′) and 𝑃 𝑋; 𝑧 < 𝑃(𝑋′ ; 𝑧′) can both be true. Special care 

must be taken not to use measures whose poverty judgements are meaningless (i.e. reversible 

under equivalent representations) when variables are ordinal. 

There is a methodology that combines the identification method used in the AF measures 𝜌𝑘  

with the headcount ratio as the aggregate measure: ℳ(𝜌𝑘 , 𝐻). ℳ 𝜌𝑘 , 𝐻 , which was used in 

previous counting measures surveyed in Chapter 4, satisfies the ordinality property. But it does 

so at the cost of violating dimensional monotonicity, among other properties. In contrast, the 
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methodology that combines a counting approach to identification and 𝑀0  as the aggregate 

measure, ℳ 𝜌𝑘 , 𝑀0 ,  provides both meaningful comparisons and favourable axiomatic 

properties and is arguably a better choice when data are ordinal. 

Second, while other measures have aggregate values whose meaning can only be found relative 

to other values, 𝑀0  conveys tangible information on the deprivations of the poor in a 

transparent way. As stated in section 5.3, it can either be interpreted as the incidence of 

poverty ‘adjusted’ by poverty intensity or as the aggregate deprivations experienced by the 

poor as a share of the maximum possible range of deprivations that would occur if all 

members of society were deprived in all dimensions. As we shall see in section 5.5.3, the 

additive structure of the 𝑀0  measure permits it to be broken down across dimensions and 

across population subgroups to obtain additional valuable information, especially for policy 

purposes. 

Third, the adjusted headcount methodology is fundamentally related to the axiomatic literature 

on freedom. In a key paper, Pattanaik and Xu (1990) explore a counting approach to 

measuring freedom that ranks opportunity sets according to the number of (equally weighted) 

options they contain. Let us suppose that the achievement matrix 𝑋 has been normatively 

constructed so that each dimension represents an equally valued functioning. Then deprivation 

in a given dimension is suggestive of capability deprivation, and since 𝑀0  counts these 

deprivations, it can be viewed as a measure of ‘unfreedom’ analogous to Pattanaik and Xu. 

Indeed, the link between ℳ(𝜌𝑘 , 𝑀0) and unfreedom can be made precise, yielding a result 

that simultaneously characterizes 𝜌𝑘  and 𝑀0 using axioms adapted from Pattanaik and Xu.11 

This general approach also has an appealing practicality: as suggested by Anand and Sen 

(1997), it may be more feasible to monitor a small set of deprivations than a large set of 

attainments. 

5.5 The Set of Consistent Partial Indices of the Adjusted Headcount Ratio 

The Adjusted Headcount Ratio condenses a lot of information. It can be unpacked to 

compare not only the levels of poverty but also the dimensional composition of poverty across 

                                                 

11 For a fuller discussion see Alkire and Foster (2007). 
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countries, for example, as well as within countries by ethnic group, urban and rural location, 

and other key household and community characteristics. This is why we sometimes describe 

𝑀0 as a high-resolution lens on poverty: it can be used as an analytical tool to identify precisely 

who is poor and how they are poor. This section presents the partial indices and consistent 

indices that serve to elucidate multidimensional poverty for policy purposes. 

5.5.1  Incidence and Intensity of Poverty 

We have already shown in section 5.3 that the 𝑀0  measure is the product of two very 

informative partial indices: the multidimensional headcount ratio—or incidence of poverty 

(𝐻)—and the average deprivation share across the poor—or the average intensity of poverty 

(𝐴). Both are relevant and informative, and it is useful to present them both in all tables. In 

Box 5.5, we present an example to show that two societies may have the same Adjusted 

Headcount Ratios but very different levels of incidence and intensity. 

Box 5.5 Similar M0 but Different Composition of Incidence and Intensity 

Suppose there are four persons in both societies 𝑋 (as in Box 5.1) and 𝑋′ and multidimensional 
poverty is analysed using four dimensions, which are weighted equally. A person is identified as poor 
if deprived in more than half of all weighted indicators (𝑘 = 0.5). The 4 × 4 achievement matrices 
of two societies are 

 Dimensions   Dimensions 

𝑋 = 

 700 14 No Yes   

𝑋′ = 

 700 14 No Yes  
 300 13 No No    300 13 No No  
 400 3 Yes No    400 3 No Yes  
 800 1 No Yes    800 1 Yes Yes  

 
and the deprivation cutoff vector 𝑧 = (500, 5, Not malnourished, Has access to improved sanitation). The 
corresponding deprivation matrices are denoted as follows. 

 Dimensions   Dimensions 

𝑔0 = 

0 0 0 0  

𝑔0′ = 

0 0 0 0 
1 0 0 1  1 0 0 1 
1 1 1 1  1 1 0 0 
0 1 0 0  0 1 1 0 

           
𝑤 = 0.25 0.25 0.25 0.25  𝑤 = 0.25 0.25 0.25 0.25 

The deprivation score vectors are thus 𝑐 = (0,0.5,1,0.25) and 𝑐′ = (0,0.5,0.5,0.5), respectively. 
Clearly, the second and the third person are identified as poor in 𝑋 and the second, third, and fourth 
persons are identified as poor in 𝑋′ . The corresponding censored deprivation matrices are as 
follows. 
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 Dimensions   Dimensions 

𝑔0(𝑘) = 

0 0 0 0  

𝑔0 ′(𝑘) = 

0 0 0 0 
1 0 0 1  1 0 0 1 
1 1 1 1  1 1 0 0 
0 0 0 0  0 1 1 0 

           
𝑤 = 0.25 0.25 0.25 0.25  𝑤 = 0.25 0.25 0.25 0.25 

Then, using the formulation of 𝑀0 = 1
𝑛   𝑤𝑗𝑔𝑖𝑗

0 (𝑘)𝑑
𝑗=1

𝑛
𝑖=1 , we obtain 𝑀0 𝑋 = 𝑀0 𝑋′  = 3/8. 

The two societies have the same level of Adjusted Headcount Ratio. However, if we break down 𝑀0 
into incidence and intensity, we find that 𝐻 𝑋 = 1/2 and 𝐻 𝑋′ = 3/4, whereas 𝐴 𝑋 = 3/4 
and 𝐴 𝑋′ = 1/2. Clearly, 𝑋 has a lower headcount ratio but the poor suffer larger deprivation on 
average. 

 
The breakdown of 𝑀0 into 𝐻 and 𝐴 can provide useful policy insights. A policymaker who is 

interested in reducing overall poverty when poverty is assessed by the Adjusted Headcount 

Ratio may do so in different ways. If 𝑀0 is reduced by focusing on the poor who have a lower 

intensity of poverty, then there will be a large reduction in 𝐻. But there may not be a large 

reduction in the average intensity (𝐴). On the other hand, if the policies are directed towards 

the poorest of the poor, then an overall reduction in 𝑀0  may be accomplished by a larger 

reduction in 𝐴 instead of 𝐻. Thus, while monitoring poverty reduction, it is possible to see 

how overall poverty has been reduced. 

It should be noted that 𝐻  and 𝐴  are also partial indices of the other 𝑀𝛼  measures. 

Additionally, these other measures, such as 𝑀1  and 𝑀2 , also have other informative partial 

indices, discussed in section 5.1. 

5.5.2  Subgroup Decomposition 

In developing multidimensional methods, we would not want to lose the useful properties that 

the unidimensional methods have successfully employed over the years. Prime among them is 

population subgroup decomposability, which, as stated in section 2.5.3, posits that overall 

poverty is a population-share weighted sum of subgroup poverty levels. This property has 

proved to be of great use in analysing poverty by regions, by ethnic groups, and by other 
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subgroups defined in a variety of ways.12 The 𝑀0 measure, as well as the other 𝑀𝛼  measures, 

satisfies the population subgroup decomposability property, a property that is directly 

inherited from the FGT class of indices (Foster, Greer, and Thorbecke 1984). 

Population subgroup decomposability allows us to understand and monitor the subgroup 𝑀0 

levels and compare them with the aggregate 𝑀0. The population share and the achievement 

matrix of subgroup ℓ are denoted by 𝜈ℓ = 𝑛ℓ/𝑛 and 𝑋ℓ, respectively. We express the overall 

𝑀0 as: 

 
𝑀0(𝑋) =  𝜈ℓ𝑀0(𝑋ℓ)

𝑚

ℓ=1

. (5.7) 

Given the additive form of equation (5.7), it is also possible to compute the contribution of 

each subgroup to overall poverty. Let us denote the contribution of subgroup ℓ to overall 

poverty by 𝔻ℓ 
0 , which is formulated as 

 
𝔻ℓ

0 = 𝜈ℓ 𝑀0(𝑋ℓ)
𝑀0(𝑋)

. (5.8) 

Note that the contribution of subgroup ℓ to overall poverty depends both on the level of 

poverty in subgroup  ℓ  and on the population share of the subgroup. Whenever the 

contribution to poverty of a region or some other group greatly exceeds its population share, 

this suggests that there is a seriously unequal distribution of poverty in the country, with some 

regions or groups bearing a disproportionate share of poverty. Clearly, the sum of the 

contributions of all groups needs to be 100%.13 

5.5.2.1 Subgroup Decompositions of the Adjusted Headcount Ratio (𝑴𝟎) 

Let us consider the example of the hypothetical society presented in Box 5.1 and show how 

the contribution of subgroups to the overall Adjusted Headcount Ratio is computed. For this 

example, let us assume a certain weighting structure and a certain poverty cutoff to identify 

                                                 

12 Additive decomposable measures satisfy subgroup consistency, but the converse does not hold. See section 5.2 
for further details on these and other properties. 
13  Note that other measures in the AF class discussed in section 5.7 satisfy the population subgroup 
decomposability property as well, and expressions (5.7) and (5.8) are equally applicable to these measures. 



Alkire, Foster, Seth, Santos, Roche and Ballon  5: The Alkire-Foster Counting Methodology 

OPHI Working Paper 86  www.ophi.org 25 

who among these four persons is poor. We assume that a 40% weight is attached to income, a 

25% weight is attached to years of education, and 25% weight is attached to 

undernourishment and the remaining 10% weight is attached to the access to improved 

sanitation. Thus, the weight vector is 𝑤 = (0.40, 0.25, 0.25, 0.10). We identify a person as 

poor if the person is deprived in 40% or more of weighted indicators, that is, 𝑘 = 0.40. 

For subgroup decomposition, we divide the entire population in 𝑋  into two subgroups. 

Subgroup 1 consists of three persons, whereas Subgroup 2 consists of only one person as 

presented in Table 5.1. Note that the person in Subgroup 2 is deprived in all dimensions. We 

denote the achievement matrix of Subgroup 1 by 𝑋1 and that of Subgroup 2 by 𝑋2. 

Table 5.1 Achievement Matrices of Subgroups in the Hypothetical Society 

 
 

Income 
Years of 

Schooling 
Completed 

Malnourished 
Has Access 
to Improved 
Sanitation 

 
 

𝑋1 =  
 700 14 22 1  Person 1 
 300 13 20 0  Person 2 
 800 1 20 1  Person 4 

        
𝑋2 =   400 3 16.65 0  Person 3 

        
𝑧 =   500 5 18.5 1   

        
 

The deprivation matrices and deprivation scores of the two subgroups are presented in Table 

5.2. Person 1 is not deprived in any dimension and so has a deprivation score of 0. Person 2 is 

deprived in two dimensions: standard of living and access to public services, and so the 

deprivation score is 0.375. Similarly, the deprivation score of Person 4 is 0.5 and Person 3’s is 

1. Now, for 𝑘 =  0.3, Person 2 and Person 4 are poor in Subgroup 1 and Person 3 is poor in 

Subgroup 2. In both subgroups, those who are deprived are identified as poor, and so there is 

no scope for censoring. The censored deprivation matrices for both groups are, in this 

particular case, the corresponding deprivation matrices. 

Table 5.2 (Censored) Deprivation Matrices of the Subgroups 

 Income 
Years of 

Schooling 
Completed 

Malnourished 
Has Access 
to Improved 
Sanitation 

 Deprivation 
Score (𝒄) 

𝑔0,1 =  
0 0 0 0 Person 1 0 
1 0 0 1 Person 2 0.50 
0 1 0 0 Person 4 0.25 
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𝑔0,2 =  1 1 1 1 Person 3 1 
       

𝑤 =  0.40 0.25 0.25 0.10   
       

 
Thus, 𝑀0(𝑋1) = (0 + 0.50 + 0.25)/3 =  0.25  and 𝑀0 𝑋2 = 1 . The overall Adjusted 

Headcount Ratio 𝑀0 𝑋 = (0 + 0.50 + 0.25 + 1)/4 = 0.438. It is straightforward to verify 

that the sum of the population-weighted Adjusted Headcount Ratios of subgroups is equal to 

the overall Adjusted Headcount Ratio. The population share of Subgroup 1 is 𝜈1 = 3/4 and 

that of Subgroup 2 is 𝜈2 = 1/4. Therefore, 𝜈1𝑀0 𝑋1 + 𝜈2𝑀0 𝑋2 = 3/4 × 0.25 + 1/4 ×

1 = 0.438 = 𝑀0 𝑋 . 

Note that the Adjusted Headcount Ratio in Subgroup 2 is more than three times larger than 

the Adjusted Headcount Ratio of Subgroup 1. Does this mean that the contribution of 

Subgroup 2 is equally large? Not necessarily. It may not always be the case because of different 

population sizes across different subgroups. Recall that the contribution of a subgroup to 

overall poverty depends on the population share of that subgroup as well. For our example, 

the contribution of Subgroup 1 to the overall Adjusted Headcount Ratio is 𝔻1
0 = (3/4 ×

0.25)/0.438 = 0.438 or 42.8%. The contribution of Subgroup 2 to the overall headcount 

ratio is 𝔻1
0 = (1/4 × 1)/0.438 = 0.571 or 57.1%. It is worth noting that, in this case, the 

population Subgroup 2 does bear a disproportionate load of poverty since, despite being only 

25% of the total population, it contributes nearly 60% of overall poverty. Because population 

shares affect interpretation, tables showing subgroup decompositions must include population 

shares for each subgroup, as well as poverty figures. 

5.5.3 Dimensional Breakdown 

As discussed in section 2.5, a multidimensional poverty measure that satisfies the dimensional 

breakdown property can be expressed as a weighted sum of the dimensional deprivations after 

identification. The 𝑀0  satisfies the dimensional breakdown property and thus can also be 

expressed as a weighted sum of post-identification dimensional deprivation, which in the 

particular case of 𝑀0 we refer to as the censored headcount ratio. 

Why is this property useful? This property allows one to analyse the composition of 

multidimensional poverty. For example, Alkire and Foster (2011a), after decomposing overall 
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poverty in the United States by ethnic group, break the poverty within those groups down by 

dimensions and examine how different ethnic groups have different dimensional deprivations, 

i.e. different poverty compositions. 

The censored headcount ratio of a dimension is defined as the percentage of the population 

who are both multidimensionally poor and simultaneously deprived in that dimension. 

Formally, we denote the 𝑗th column of the censored deprivation matrix 𝑔0(𝑘) as 𝑔⋅𝑗
0 (𝑘) and 

the mean of the column for that chosen dimension 𝑗  as ℎ𝑗  𝑘 = 1
𝑛  𝑔𝑖𝑗

0  𝑘 𝑛
𝑖=1 . We define 

ℎ𝑗  𝑘  as the censored headcount ratio of dimension 𝑗. What is the interpretation of ℎ𝑗  𝑘 ? 

The censored headcount ratio ℎ𝑗  𝑘  is the proportion of the population that are identified as 

poor (𝑐𝑖 ≥ 𝑘) and are deprived in dimension 𝑗. 

The additive structure of the 𝑀0 measure allows it to be expressed as a weighted sum of the 

censored headcount ratios, where the weight on dimension 𝑗 is the relative weight assigned to 

that dimension. We have already seen in expression (5.3) that 𝑀0 = 1
𝑛   𝑤𝑗𝑔𝑖𝑗

0 (𝑘)𝑑
𝑗=1

𝑛
𝑖=1 . 

This expression can be reformulated as 

 
𝑀0 =

1
𝑛  𝑤𝑗𝑔𝑖𝑗

0 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

=  𝑤𝑗  
1
𝑛 𝑔𝑖𝑗

0  𝑘 
𝑛

𝑖=1

 
𝑑

𝑗=1

=  𝑤𝑗ℎ𝑗  𝑘 
𝑑

𝑗=1

. (5.9) 

Analyses based on the censored headcount ratios can be complemented in an interesting way 

by considering the percentage contribution of each dimension to overall poverty. The 

censored headcount ratio shows the extent of deprivations among the poor but not the 

relative value of the dimensions. Two dimensions may have the same censored headcount 

ratios but very different contributions to overall poverty. This is because the contribution not 

only depends on the censored headcount ratio but also on the weight or value assigned to each 

dimension. Let us denote the contribution of dimension 𝑗  to the 𝑀0  by 𝜙𝑗
0 . Then, the 

contribution of dimension 𝑗 for poverty cutoff 𝑘 is given by 

 𝜙𝑗
0 𝑘 = 𝑤𝑗

ℎ𝑗  𝑘 
𝑀0

, (5.10) 

for each 𝑗 = 1, … , 𝑑 . Whenever the contribution to poverty of a certain indicator greatly 

exceeds its weight, there is a relatively high censored headcount in this indicator. The poor are 



Alkire, Foster, Seth, Santos, Roche and Ballon  5: The Alkire-Foster Counting Methodology 

OPHI Working Paper 86  www.ophi.org 28 

more deprived in this indicator than in others. Clearly, the sum of the contributions of all 

indicators is 100%.14 The censored headcount ratios and the percentage contributions have 

policy relevance for understanding the composition of poverty in different regions. Chapter 9 

describes how they may be used to analyse intertemporal changes in multidimensional poverty 

and percentage contributions. 

The uncensored (raw) headcount ratio of a dimension is defined as the proportion of the 

population that are deprived in that dimension. It aggregates deprivations pertaining to the 

poor (censored headcount) with deprivations among the non-poor.  The uncensored 

headcount ratio of dimension 𝑗  is computed from the 𝑗 th column 𝑔⋅𝑗
0  of the (uncensored) 

deprivation matrix 𝑔0 . We denote the mean of the column vector 𝑔⋅𝑗
0  by ℎ𝑗 = 1

𝑛  𝑔𝑖𝑗
0𝑛

𝑖=1 . 

Therefore, ℎ𝑗  is the uncensored (raw) headcount ratio of dimension j. 

The censored headcount ratio may differ from the uncensored headcount ratio except when 

the identification criterion used is union. In this case, a person is identified as poor if the person 

is deprived in any dimension, so no deprivations are censored. Thus, the censored and 

uncensored headcount ratios are identical. 

5.5.3.1 The Censored and Uncensored Headcount Ratios and Percentage 

Contributions 

Using a hypothetical illustration, we now show how the uncensored headcount ratios and the 

censored headcount ratios are computed and then show how the contribution of each 

dimension to the Adjusted Headcount Ratio is calculated. Let us consider the same 

achievement matrix and weight vector as was in the previous subsection, which consists of 

four persons and four dimensions. 

First, we show how to compute the uncensored headcount ratio. The achievement matrix 𝑋 

and the deprivation cutoff vector 𝑧 are used obtain the deprivation matrix 𝑔0 , presented in 

Table 5.3. The uncensored headcount ratio of any dimension 𝑗  is ℎ𝑗 = 1
𝑛  𝑔𝑖𝑗

0𝑛
𝑖=1 . The 

                                                 

14  Note that if poverty as measured by 𝑀0  is very low, the censored headcount ratios are also low, and 
contributions require care in interpretation. One indicator can have an 80% contribution, not because there is a 
massive deprivation in that indicator but because it is one of the few indicators that have a non-zero censored 
headcount, explaining most of the (very low) poverty. 
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uncensored headcount ratio of the standard of living dimension is (0 + 1 + 1 + 0)/4 = 0.5. 

In other words, 50% of the population is deprived in the standard of living dimension. 

Similarly, the uncensored headcount ratio of the knowledge dimension is 50%, of the 

nutritional status dimension is 25% and of the access to services dimension is 50%. The 

uncensored headcount ratios (summarized by vector ℎ) are reported in the bottom-most row 

of the table. 

Table 5.3  Deprivation Matrix of the Hypothetical Society 

 Income 
Years of 

Schooling 
Completed 

Malnourished 
Has Access to 

Improved 
Sanitation 

Deprivation 
Score (𝒄) 

𝑔0 =  

0 0 0 0 0 
1 0 0 1 0.50 
1 1 1 1 1 
0 1 0 0 0.25 

      
𝑤 =             0.40           0.25           0.25             0 .10  

      
ℎ =     0.50 0.50 0.25    0.50  

      
 

Next, we show how to compute the censored headcount ratio. We identify a person as poor 

if the person is deprived in 40% of weighted indicators, i.e. 𝑘 = 0.4. Using the identification 

function we construct the censored deprivation matrix, presented in Table 5.4. Note that we 

censor the deprivations of Person 4 and replace them by 0 even when Person 4 is deprived in 

the education dimension. Why do we do this? We do so because the deprivation score of 

Person 4 is only 0.25, which is less than the poverty cutoff of 𝑘 = 0.4. It can be easily verified 

that the 𝑀0 measure obtained from the censored deprivation matrix is 0.350. 

Table 5.4   Censored Deprivation Matrix of the Hypothetical Society 

 Income 
Years of 

Schooling 
Completed 

Malnourished 
Has Access 
to Improved 
Sanitation 

Deprivation 
Score (𝒄) 

𝑔0(𝑘) =  

0 0 0 0 0 
1 0 0 1 0.50 
1 1 1 1 1 
0 0 0 0 0 

      
𝑤 = 0.40 0.25 0.25 0.10  

      
ℎ 𝑘 = 0.50 0.25 0.25 0.50 𝑴𝟎 = 𝟎. 𝟑𝟕𝟓 
      

𝜙0 𝑘 = 53.3% 16.7% 16.7% 13.3%  
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Let us finish this example by showing how to compute the contribution of a dimension to the 

Adjusted Headcount Ratio. We already know that the Adjusted Headcount Ratio is 0.350 and 

that the percentage contribution is 𝜙𝑗
0 𝑘 = 𝑤𝑗ℎ𝑗  𝑘 /𝑀0 . Let us consider the income 

dimension, which has a censored headcount ratio of 0.50 and the weight attached to it is 0.40. 

Then the contribution of the dimension to the Adjusted Headcount Ratio is 0.40 ×

0.50/0.375 = 0. 533 or 53.3%.  Similarly, the contribution of the education dimension is 

0.25 × 0.25/0.375 = 0.176 or 16.7%. An interesting aspect to note is that the censored 

headcount ratio of the access to sanitation dimension is the same as that of the income 

dimension, but its contribution to the Adjusted Headcount Ratio is only 13.3%, which is lower 

than the contribution of the income dimension. The reason is that the weight attached to the 

standard of living dimension is twice the weight of these two dimensions. 

5.6 A Case Study: The Global Multidimensional Poverty Index (MPI) 

Now that we have learned how to compute the Adjusted Headcount Ratio and its partial 

indices, we provide an example showing one prominent implementation of the 𝑀0 measure: 

the global Multidimensional Poverty Index (MPI). The global MPI was introduced by Alkire 

and Santos (2010) and has been reported annually in the Human Development Report since 2010.15 

The index consists of ten indicators grouped into three dimensions as outlined in Table 5.5. 

Table 5.5  Dimensions, Indicators, Deprivation Cutoffs, and Weights of the Global MPI 

Dimension Indicator Weight 
(𝒘) Deprivation Cutoff (𝒛) 

Education  Schooling (Sc) 1/6 No household member has completed five years of schooling 
Attendance (At) 1/6 Any school-aged child in the household is not attending school up to class 816 

Health Nutrition (N) 1/6 Any adult or child in the household with nutritional information is 
undernourished17 

Mortality (M) 1/6 Any child has passed away in the household18 

Standard of 
Living 

Electricity (E) 1/18 The household has no electricity 

Sanitation (S)  1/18 The household’s sanitation facility is not improved or it is shared with other 
households 

Water (W) 1/18 The household does not have access to safe drinking water or safe water is more 
than a 30-minute walk (round trip) 

Floor (F) 1/18 The household has a dirt, sand, or dung floor 

                                                 

15 See also Alkire and Santos (2014), where the MPI is presented and scrutinized with a host of robustness tests. 
16 If a household has no school-aged children, the household is treated as non-deprived. 
17 An adult with a Body Mass Index below 18.5 m/kg2 is considered undernourished. A child is considered 
undernourished if his or her body weight, adjusted for age, is more than two standard deviations below the 
median of the reference population. 
18 If no person in a household has been asked this information, the household is treated as non-deprived. 
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Cooking fuel (C) 1/18 The household cooks with dung, wood, or charcoal 

Assets (A) 1/18 The household owns at most one radio, telephone, TV, bike, motorbike, or 
refrigerator; and does not own a car or truck 

Source: Alkire and Santos (2010); cf. Alkire, Roche, Santos, and Seth (2011) and Alkire, Conconi, and Roche (2013).  
 

Note that the index uses nested weights. The weights are distributed such that each dimension 

reported in the first column receives an equal weight of 1/3 and the weight is equally divided 

among indicators within each dimension (note the distinction in terms here between indicator 

and dimension). Thus, each education and health indicator receives larger weights than the 

standard of living indicators. The weights for each indicator are reported in the third column. 

The deprivation cutoffs are outlined in the final column. Any person living in a household that 

fails to meet the deprivation cutoff is identified as deprived in that indicator. An abbreviation 

has been assigned to each indicator in the second column that will be useful for the 

presentations in next table. 

Table 5.6 presents a hypothetical example of people living in four households, which will help 

explain how the MPI is constructed. The first two households live in urban areas and the third 

and the fourth households live in rural areas. In this illustration, the households are not of 

equal size. The household sizes are reported in the third column of the table. The deprivation 

matrix (𝑔0) is presented in columns 4 through column 13. Following the standard notation, a 1 

indicates that a household is deprived in the corresponding indicator and 0 indicates that the 

household is not deprived in that indicator. For example, the first household is only deprived 

in mortality (M) and cooking fuel (C), whereas the fourth household is deprived in five 

indicators: schooling (Sc), mortality (M), electricity (E), cooking fuel (C), and asset ownership 

(A). 

Table 5.6  The Deprivation Matrix and the Identification of the Poor 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
     Education Health Standard of Living       

Region HH  
No.  

HH 
Size Sc At N M E S W F C A 𝒄 Poor 𝒄(𝒌) 

Urban 1 4 0 0 0 1 0 0 0 0 1 0 0.22 No 0 
2 7 1 1 0 1 1 0 1 0 1 1 0.72 Yes 0.72 

Rural 3 5 0 0 1 0 1 1 1 0 1 0 0.39 Yes 0.39 
4 4 1 0 0 1 1 0 0 0 1 1 0.50 Yes 0.5 

Weight (𝒘) 1/6 1/6 1/6 1/6 1/18 1/18 1/18 1/18 1/18 1/18       
Uncensored Headcount Ratio 0.55 0.35 0.25 0.75 0.80 0.25 0.60 0.00 1.00 0.55    

Censored Headcount Ratio 0.55 0.35 0.25 0.55 0.80 0.25 0.60 0.00 0.80 0.55    
Percentage Contribution (in 

%) 0.20 0.13 0.09 0.20 0.10 0.03 0.07 0.00 0.10 0.07 
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Let us first show how the deprivation score (𝑐𝑖) of each person is computed. Note that in this 

example, all persons within a household are assigned the same deprivation score, which is the 

weighted sum of deprivations that the household faces. For example, the deprivation score of 

each person in the first household is 

𝑐1 =  1 ×
1
6
 +  1 ×

1
18

 = 0.222. 

The deprivation scores are reported in column 14. The deprivation scores of the second, third, 

and fourth households are 0.72, 0.39, and 0.50, respectively. Thus, the second household has 

the largest deprivation score and the first household has the lowest deprivation score. 

In the computation of the global MPI, a person is identified as poor if the person’s deprivation 

score is equal to 1/3 or higher. It is evident from column 14 that the first household’s 

deprivation score is less than 1/3, whereas the three other households’ deprivation scores are 

larger than 1/3. Thus, all persons in the first household are identified as non-poor, whereas all 

other persons in the last three households are identified as multidimensionally poor. Column 

15 classifies the households as multidimensionally poor or not. The multidimensional 

headcount ratio or the incidence of poverty (𝐻) is (hint: use the household size) 

𝐻 =
𝑞
𝑛 =  7 + 5 + 4

4 + 7 + 5 + 4
 = 0.80.

 
So 80% of the population are poor. Note that we have already discussed that the 

multidimensional headcount ratio (H) does not satisfy the dimensional monotonicity property, 

and so it does not change if any of the three poor households become deprived in an 

additional dimension. This limitation is overcome by the Adjusted Headcount Ratio (𝑀0 ), 

which is called the MPI in this example. The censored deprivation scores are reported in 

column 16, where the deprivation score of the first household has been censored by replacing 

the score by 0. The MPI is the mean of the censored deprivation score vector and can be 

computed using expression (5.3) as (hint: use the household size) 

𝑀𝑃𝐼 =
1
𝑛 𝑐𝑖(𝑘)

𝑛

𝑖=1

=
 4 × 0 +  7 × 0.72 +  5 × 0.39 + (4 × 0.50)

4 + 7 + 5 + 4
= 0.450. 
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One may be also interested in knowing how poor the poor people are or the intensity of 

multidimensional poverty. The intensity of poverty can be computed as 

𝐴 =
1
𝑞 𝑐𝑖(𝑘)

𝑞

𝑖=1

=
 0.722 × 7 +  0.389 × 5 +  0.500 × 4 

 7 + 5 + 4 = 0.563. 

So, on average, poor people are deprived in 56.3% of the weighted indicators. It can be easily 

verified that the MPI is the product of the incidence of poverty and the intensity of poverty, 

i.e. 𝑀𝑃𝐼 =  𝐻 × 𝐴 = 0.8 × 0.563 = 0.450. 

Let us now show how the subgroup decomposition property may be used to understand the 

subgroups’ multidimensional poverty and the contribution of the subgroup to the overall 

poverty. Using the same process as above, the 𝑀𝑃𝐼 , 𝐻 , and 𝐴 can be computed for each 

population subgroup. The MPI of the two urban households is 0.46, which can be obtained 

either by summing the censored deprivation scores weighted by the population share of each 

household or as a product of 𝐻 = 0.64 and 𝐴 = 0.72. The MPI of the two rural households 

is 0.44, whereas 𝐻 = 1  and 𝐴 = 0.44 . Indeed, the incidence of poverty in the rural 

households is higher because all persons are identified as multidimensionally poor; whereas in 

the urban households this is not the case. However, when comparing the MPIs, we find the 

urban households have higher poverty because the intensity is higher. The urban households 

contribute 55% of the total population, and the rural ones contribute 45%. Thus, following 

the decomposition formula in equation (5.7), it can be verified that the overall MPI is 0.55 ×

0.46 + 0.45 × 0.44 = 0.45. Again, using equation (5.8), it can be verified that the urban 

contribution to the overall MPI is 56%, whereas the rural contribution to the overall MPI is 

only 44%. 

Next, using the last rows of Table 5.6, we show how the dimensional breakdown property is 

used. We have seen in expression (5.9) that the overall 𝑀0 can be expressed as a weighted 

average of censored headcount ratios. How are the censored headcount ratios in Table 5.6 

computed? The censored headcount ratio for the years of education indicator is equal to 

(7+4)/20 = 55%. Similarly, the censored headcount ratio of the cooking fuel indicator is equal 

to (7+4+5)/20 = 80%. Note that the first household is not identified as poor and thus 

censored. This is why the censored headcount ratios are different from the uncensored 

headcount ratios reported in the row above. Looking at them, we can see that the poor in this 
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society exhibit the highest deprivation levels in access to electricity and cooking fuel, followed 

(though with much lower headcount ratios) by sanitation, years of education, mortality, and 

assets. The percentage contributions of the indicators, which are computed using expression 

(5.10), are reported in the final column of the table. It is evident that neither electricity nor 

sanitation nor assets have the highest contribution to the overall MPI. Why? Because the 

weights assigned to these dimensions are lower than those assigned to schooling and mortality. 

We now provide the following example to show how the censored headcount ratio and the 

percentage contribution of dimensions are used in practice. Borrowing from Alkire, Roche, 

and Seth (2011), the example provides information on two subnational regions for a cross-

country implementation of the MPI. These two regions have roughly the same 𝑀0  levels 

reported in the final row of Table 5.7. Breaking 𝑀0  down by dimension reveals how the 

underlying structure of deprivations differs across the two countries for the ten indicators.19 In 

Ziguinchor (a region in Senegal), mortality deprivations contribute the most to 

multidimensional poverty, whereas in Barisal (a division in Bangladesh), the relative 

contribution of nutritional deprivations is much larger than, say, deprivations in school 

attendance. Although the overall poverty levels as measured by 𝑀0  are very similar, 

dimensional breakdown reveals a very different underlying structure of poverty, which in turn 

could suggest different policy responses. 

Table 5.7 Similar MPI but Different Compositions in Two Sub-national Regions 

    Ziguinchor (Senegal)   Barisal (Bangladesh) 

Dimension Indicators 

Censored 
Headcount 

Ratio 
Percentage 

Contribution   

Censored 
Headcount 

Ratio 
Percentage 

Contribution 

Education Years of Education 0.165 8.6%   0.214 11.2% 
Child School Attendance 0.180 9.4%   0.095 5.0% 

Health Mortality 0.429 22.4%   0.242 12.7% 
Nutrition 0.103 5.4%   0.427 22.4% 

Living 
Standards 

Electricity 0.563 9.8%   0.532 9.3% 
Sanitation 0.597 10.4%   0.458 8.0% 
Water 0.534 9.3%   0.023 0.4% 
Floor 0.448 7.8%   0.612 10.7% 
Cooking Fuel 0.643 11.2%   0.630 11.0% 
Assets 0.333 5.8%   0.538 9.4% 

MPI 0.319     0.318   
H 62.7%   65.1%  
                                                 

19 Data are drawn from the Demographic and Health Surveys (DHS) for Bangladesh (2007) and Senegal (2005), 
which are nationally representative household surveys. 
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A 50.7%   48.9%  
Source: Alkire, Roche, and Seth (2011). 

5.7 AF Class Measures Used with Cardinal Variables 

In this chapter our discussion has focused on the Adjusted Headcount Ratio as many poverty 

indicators in practice are of ordinal scale. However, if all indicators are cardinal, we can go 

beyond the Adjusted Headcount Ratio to measures that additionally reflect the depth of 

deprivations poor people experience below the deprivation cutoff in each dimension. The 

identification step proceeds in exactly the same way as with 𝑀0 . The difference is in the 

aggregation step. This section introduces the normalized gap matrix, which is used for the 

aggregation step for all the 𝑀𝛼  class of measures with 𝛼 > 0. The section also presents the 

two most common members of the 𝑀𝛼  class with 𝛼 > 0: 𝑀1 and 𝑀2. 

5.7.1  The Normalized Gap Matrix 

The basic matrix for measures drawing upon cardinal data is the normalized gap matrix, 

which, like the deprivation matrix, is constructed from the achievement matrix and the vector 

of deprivation cutoffs. The entries in the normalized gap matrix are the shortfall or gap in 

deprived people’s achievements, expressed as a proportion of the respective dimensional 

deprivation cutoff. 

In the normalized gap matrix 𝑔1  the typical element is defined by 

𝑔𝑖𝑗
1 =  𝑔𝑖𝑗

0 × (𝑧𝑗 − 𝑥𝑖𝑗 ) 𝑧𝑗 . In other words, the normalized gap matrix replaces each deprived 

entry in 𝑋 with the respective normalized gap and replaces each entry that is not below its 

deprivation cutoff with 0. The normalized gap matrix provides a snapshot of the depth of 

deprivation of each person in each dimension. The squared gap matrix 𝑔2  replaces each 

deprived entry in 𝑋 with the square of the normalized gap and replaces each entry that is not 

below its deprivation cutoff with 0. Thus the typical element of the squared gap matrix is 

𝑔𝑖𝑗
2 =  𝑔𝑖𝑗

0  (𝑧𝑗 − 𝑥𝑖𝑗 ) 𝑧𝑗  2
. Squaring the normalized gaps puts relatively more emphasis on 

larger deprivations. Generalizing the above, we may define the normalized gap matrix of order 

𝛼 by raising the normalized gaps to the power 𝛼 and denote this by 𝑔𝛼 , whose typical element 

is 𝑔𝑖𝑗
𝛼 = 𝑔𝑖𝑗

0  (𝑧𝑗 − 𝑥𝑖𝑗 ) 𝑧𝑗  𝛼 . Clearly, if the normalized gap matrix is raised to the power 0, we 
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would return to the deprivation matrix 𝑔0 , in which all entries take the value of 0 or 1. 

Similarly, if the normalized gap matrix is raised to the power one and two, we obtain 𝑔1 and 

𝑔2, respectively. 

From the normalized gap matrices, we apply the same identification function 𝜌𝑘  to obtain the 

censored normalized gap matrix of order 𝛼  as 𝑔𝛼(𝑘) such that 𝑔𝑖𝑗
𝛼  𝑘 = 𝑔𝑖𝑗

𝛼 × 𝜌𝑘(𝑥𝑖⋅; 𝑧) . 

Recall that the identification function 𝜌𝑘  is based on the vector of weighted deprivation counts 

𝑐 (generated, as before, from the 𝑔0matrix and the vector of weights) and the poverty cutoff 

𝑘. The identification function replaces all deprived entries of the non-poor with 0 and leaves 

the deprived entries of the poor unchanged. We define 𝑔1(𝑘) as the censored normalized gap 

matrix and 𝑔2(𝑘) as the censored squared gap matrix. 

5.7.2  The Adjusted Poverty Gap, Adjusted FGT, and MD Measures 

The Adjusted Poverty Gap measure 𝑀1(𝑋; 𝑧) can be defined as 

 
𝑀 =

1
𝑛  𝑤𝑗𝑔𝑖𝑗

1 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

. (5.11) 

In other words, the Adjusted Poverty Gap is the sum of the weighted normalized gaps of the 

poor or   𝑤𝑗𝑔𝑖𝑗
1  𝑘 ,𝑑

𝑗=1
𝑛
𝑖=1  divided by the population (𝑛). Another way of viewing 𝑀1 is in 

terms of partial indices: 𝑀1 is the product of 𝐻 (incidence) and 𝐴 (intensity) (which in turn is 

𝑀0) and the average deprivation gap among the poor 𝐺. That is, 

 
𝑀1 =

1
𝑛  𝑤𝑗𝑔𝑖𝑗

1 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

=
𝑞
𝑛 ×

  𝑤𝑗𝑔𝑖𝑗
0  𝑘 𝑑

𝑗=1
𝑞
𝑖=1

𝑞 ×
  𝑤𝑗𝑔𝑖𝑗

1  𝑘 𝑑
𝑗=1

𝑞
𝑖=1

  𝑤𝑗𝑔𝑖𝑗
0  𝑘 𝑑

𝑗=1
𝑞
𝑖=1

= 𝐻 × 𝐴 × 𝐺. (5.12) 

In words, 𝐺 is the average value of the normalized gap among all instances in which any poor 

person is deprived (and hence where the censored normalized gap is positive). Thus, 𝐺 

provides information on the average depth of deprivations across all poor and deprived states.  

As in the case of 𝑀0, the partial indices greatly aid in comparing multidimensional poverty 

across time and space. Suppose for example that 𝑀1 is higher in one region than in another. It 

could be useful to examine the extent to which the difference is due to a higher 𝐻,or to higher 
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values of 𝐴 or 𝐺. It is also possible to examine the average gaps for each dimension to identify 

in which dimension normalized gaps tend to be higher. 

Under methodology (𝜌𝑘 , 𝑀1), if the deprivation of a poor person deepens in any dimension, 

then the respective 𝑔𝑖𝑗
1 (𝑘) will rise and hence so will 𝑀1. Consequently, (𝜌𝑘 , 𝑀1) satisfies the 

property of monotonicity. 

To incorporate sensitivity to one form of inequality among the poor, which satisfies the 

transfer property defined in section 2.5, we turn to the censored matrix 𝑔2(𝑘) of squared 

normalized shortfalls. The Adjusted Squared Gap measure or Adjusted FGT Measure  

𝑀2(𝑋; 𝑧) can be defined as 

 
𝑀2 =

1
𝑛  𝑤𝑗𝑔𝑖𝑗

2 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

. (5.13) 

The adjusted squared gap is the sum of the weighted normalized squared gaps of the poor, or 

  𝑤𝑗𝑔𝑖𝑗
2  𝑘 ,𝑑

𝑗=1
𝑛
𝑖=1  divided by the population (𝑛). 𝑀2  can also be expressed in terms of 

partial indices as the product of 𝐻 (incidence) and 𝐴 (intensity) and the average severity index 

𝑆. That is 

 
𝑀2 =

1
𝑛  𝑤𝑗𝑔𝑖𝑗

2 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

=
𝑞
𝑛 ×

  𝑤𝑗𝑔𝑖𝑗
0  𝑘 𝑑

𝑗=1
𝑞
𝑖=1

𝑞 ×
  𝑤𝑗𝑔𝑖𝑗

2  𝑘 𝑑
𝑗=1

𝑞
𝑖=1

  𝑤𝑗𝑔𝑖𝑗
0  𝑘 𝑑

𝑗=1
𝑞
𝑖=1

= 𝐻 × 𝐴 × 𝑆 . (5.14) 

 
The average severity index 𝑆 denotes the average severity among all instances where a poor 

person is deprived (and hence where the censored squared gap is positive). By summarizing 

the square of the normalized gaps, 𝑆 places relatively greater emphasis on the larger gaps. 

Therefore, under  𝜌𝑘 , 𝑀2 , a given-sized increase in a deprivation of a poor person will have a 

greater impact the larger the initial level of deprivation. Consequently, the methodology 

satisfies the weak transfer property and is sensitive to the inequality with which deprivations 

are distributed among the poor. 

We generalize 𝑀0 , 𝑀1 , and 𝑀2  to the class 𝑀𝛼 𝑥, 𝑧  of multidimensional poverty measures 

associated with the unidimensional FGT class. The adjusted FGT class of multidimensional 

poverty measures can be defined as 
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𝑀𝛼 =

1
𝑛  𝑤𝑗𝑔𝑖𝑗

𝛼 (𝑘)
𝑑

𝑗=1

𝑛

𝑖=1

;  𝛼 ≥ 0. (5.15) 

In other words, 𝑀𝛼  is the sum of the  𝛼  powers of the normalized gaps of the poor, or 

  𝑤𝑗𝑔𝑖𝑗
𝛼 (𝑘)𝑑

𝑗=1
𝑛
𝑖=1 , divided by the population (𝑛). In the notation (Method IV in Box 5.7) 

used in Alkire and Foster (2011a), the 𝑀1 , 𝑀2, and 𝑀𝛼  indices are each the means of their 

respective matrices. 

The general methodology employing the dual-cutoff function 𝜌𝑘  and an associated FGT 

measure 𝑀𝛼  is denoted by ℳ𝑘𝛼 = (𝜌𝑘 , 𝑀𝛼).  It is important to define the AF methodology 

fully, both the dual-cutoff identification strategy and the poverty measures, because it is this 

combined methodology which assures that the resulting measures satisfy the principles here 

specified. 

As stated in section 3.6.1 and as a way to wrap up this chapter, it is worth recalling that all 

measures in the AF family satisfy symmetry, replication invariance, scale invariance, poverty 

focus, deprivation focus, dimensional monotonicity, population subgroup decomposability, 

and dimensional breakdown. For 𝛼 = 0, the measure satisfies the ordinality property, making 

it suitable for implementation when at least some of the indicators used are of ordinal scale. 

For 𝛼 > 0 , the measures require all indicators to be cardinal. When  𝛼 ≥ 1 , the measures 

satisfy strong monotonicity. When 𝛼 ≥ 2, the measures satisfy transfer and weak deprivation 

rearrangement. When the union criterion is used for identification and 𝛼 ≥ 1, the measures 

satisfy continuity. 

Box 5.6 α An Alternative Presentation of 𝑴𝜶 Measures Using Non-normalized Weights 

In this chapter we have stated the formulas in terms of normalized weights (Method I in Box 
5.7), but they can also be expressed using non-normalized weights such that 𝑤𝑗 > 0 for all 𝑗 
and  𝑤𝑗

𝑑
𝑗=1 = 𝑑, so that they add to the total number of dimensions (Method IV in Box 5.7). 

In order to do so, we introduce the weighted normalized gap matrices. Like the weighted 
deprivation matrix 𝑔 0  that we defined earlier in Box 5., we may also define the weighted 
normalized gap matrix of order 𝛼 as 𝑔 𝛼  such that 𝑔 𝑖𝑗𝛼 = 𝑤𝑗𝑔𝑖𝑗

𝛼 . In other words, in weighted 
normalized gap matrices, each deprived entry in 𝑋 is replaced with its respective normalized 
gap of order 𝛼 multiplied by its relative weight and each entry that is not below its deprivation 
cutoff is replaced with 0. For 𝛼 = 1, 𝑔1 is the weighted normalized gap matrix with the typical 
element being 𝑔 𝑖𝑗1 = 𝑤𝑗𝑔𝑖𝑗

1 . Similarly, for 𝛼 = 2, 𝑔2 is the weighted squared gap matrix with 
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𝑔 𝑖𝑗2 = 𝑤𝑗𝑔𝑖𝑗
2 . 

The censored weighted normalized gap matrix of order 𝛼 can be obtained as 𝑔 𝛼(𝑘) such that 
𝑔 𝑖𝑗𝛼  𝑘 = 𝑔 𝑖𝑗𝛼 × 𝜌𝑘(𝑥𝑖⋅; 𝑧). Thus, 𝑔 1(𝑘) is the censored weighted normalized gap matrix and 
𝑔 2(𝑘) is the censored weighted normalized squared gap matrix. As with any censored matrix, 
these matrices are obtained by multiplying the (weighted) deprivation matrix by the 
identification function 𝜌𝑘 . 

The adjusted FGT class of multidimensional poverty measures can be defined as 

 𝑀𝛼 = 𝜇 𝑔 𝛼 𝑘  ;  𝛼 ≥ 0. (5.16) 

In this case, 𝑀𝛼  is the weighted sum of the α powers of the normalized gaps of the poor, or 
  𝑔 𝑖𝑗𝛼 (𝑘)𝑑

𝑗=1
𝑛
𝑖=1 , divided by the highest possible value for this sum, or 𝑛 × 𝑑. 

Based on expression (5.16), the Adjusted Poverty Gap measure 𝑀1(𝑋; 𝑧) is the mean of the 
censored weighted normalized gap matrix and can be defined as 

 𝑀1 = 𝜇 𝑔 1 𝑘  . (5.17) 

Thus, the Adjusted Poverty Gap is the sum of the weighted normalized gaps of the poor, or 
  𝑔 𝑖𝑗1 (𝑘)𝑑

𝑗=1
𝑛
𝑖=1 , divided by the highest possible sum of normalized gaps, or 𝑛 × 𝑑. 

Similarly, the Adjusted Squared Gap or the Adjusted FGT Measure is given by 

 𝑀2 = 𝜇 𝑔 2 𝑘  . (5.18) 

Thus, 𝑀2  is the sum of the squared normalized gaps of the poor, or   𝑔 𝑖𝑗2 (𝑘)𝑑
𝑗=1

𝑛
𝑖=1 , 

divided by the highest possible sum of the squared normalized gaps, or 𝑛 × 𝑑. 

 5.8 Some Implementations of the AF Methodology 

As mentioned in Chapter 1, since its development, the Alkire-Foster approach to 

multidimensional poverty has generated some practical interest. These include a global 

Multidimensional Poverty Index (MPI) estimated over 100 developing countries20 as well as 

official national multidimensional poverty measures in Mexico, Colombia, Bhutan, and the 

Philippines with many other regional, national and subnational measures in progress. 21 

Adaptations of the methodology include the Gross National Happiness Index of the Royal 

Government of Bhutan (Ura et al. 2012) and the Women’s Empowerment in Agriculture 

                                                 

20 UNDP (2010a); Alkire and Santos (2010, 2014); Alkire Roche Santos and Seth (2011); Alkire Conconi and 
Roche (2013); Alkire Conconi and Seth (2014a). 
21 These experiences are documented on the often-updated site www.mppn.org. 

http://www.mppn.org/
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Index (Alkire, Meinzen-Dick et al. 2013). Several academic studies have implemented the AF 

approach for different poverty measurement purposes and in different parts of the world. 

These are summarized in Table 5.8. 
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Table 5.8. Summary of Research Studies That Have Implemented the AF Methodology 

Authors Year Paper Title Implements AF method to... Region of the world for 
which it was 
implemented 

Alkire 
Apablaza and 
Jung 

2014 Multidimensional Poverty Measurement 
for EU-SILC countries 

Constructs trial measures using EU-SILC data 2006–
2012 and analyses by country, gender, age, and 
dimensional composition 

Europe 

Alkire and 
Seth 

2013a Identifying BPL Households: A 
Comparison of Methods 

Compares a simple targeting-based method to some of 
the proposed mthods for targeting the poor for the 
BPL programme in India. 

India, South Asia 

Alkire and 
Seth 

2013b Multidimensional Poverty Reduction in 
India between 1999 and 2006: Where 
and How? 

Monitors and studies multidimensional poverty 
reduction in India  

 India, South Asia 

Alkire and 
Seth 

2013c Selecting a Targeting Method to Identify 
BPL Households in India 

Propose a counting-based targeting methodology for 
the BPL programme in India 

India, South Asia 

Arndt et al 

 

2012 

 

Ordinal Welfare Comparisons with 
Multiple Discrete Indicators: A First-
Order Dominance Approach and 
Application to Child Poverty 

Performs child poverty comparison over time and 
between regions 

Vietnam, Mozambique 

Azevedo and 
Robles 

2013 Multidimensional Targeting: Identifying 
Beneficiaries of Conditional Cash 
Transfer Programmes 

Implements the AF methodology to propose a 
targeting method 

Latin America 

Batana 2013 Multidimensional Measurement of 
Poverty Among Women in Sub-Saharan 
Africa 

Measure multidimensional poverty among women in 
fourteen sub-Saharan African countries 

Sub-Saharan Africa 

Battiston et al 2013 Income and Beyond: Multidimensional 
Poverty in Six Latin American Countries 

Measure multidimensional poverty in six Latin 
American countries and track its reduction between 
1992–2006 

Latin America 

Beja and Yap   2013 Counting Happiness from the Individual 
Level to the Group Level 

Uses the counting measure to assess group-level 
happieness 

Philippines 

Castro, Baca, 
Ocampo 

2012 (Re)counting the Poor in Peru: A 
Multidimensional Approach 

Uses the AF methodology to compare headcount ratios 
of monetary povery and multidimensional poverty 
between 2004 and 2008 in regions of Peru. 

Peru, Latin America 

Foster, 
Horowitz and 
Méndez 

2012 An Axiomatic Approach to the 
Measurement of Corruption: Theory and 
Applications 

Develops a measure of corruption No regional application 

Gradín  2013 Race, Poverty and Deprivation in South 
Africa 

Measures poverty and material deprivation and the 
racial gap among South Africans after apartheid 

South Africa 

Mitra 2013 Towards a Multidimensional Measure of 
Governance 

Develops a governance index for sub-Saharan African 
countries 

Sub-Saharan Africa 
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Mitra, Posarac 
and Vick  

2013 Disability and Poverty in Developing 
Countries: A Multidimensional Study 

Obtains the economic profile of persons (aged 18–65) 
with disabilities. Multidimensional poverty analysis is 
performed for persons with and without disability 

Burkina Faso, Ghana, 
Kenya, Malawi, 
Mauritius, Zambia, and 
Zimbabwe; Bangladesh, 
Lao PDR, Pakistan, and 
the Philippines; Brazil, 
Dominican Republic, 
Mexico, and Paraguay 

Mitra, Jones et 
al.  

2013 Implementing a Multidimensional 
Poverty Measure Using Mixed Methods 
and a Participatory Framework 

Measures multidimensional poverty among people with 
psychiatric diagnoses.  

USA 

Nicholas and 
Ray  

2011 Duration and Persistence in 
Multidimensional Deprivation: 
Methodology and Australian Application 

Constructs dynamic deprivation measures and assesses 
the duration of deprivation across multiple dimensions 

Australia  

Notten and 
Roelen  

2012 A New Tool for Monitoring (Child) 
Poverty: Measures of Cumulative 
Deprivation 

Measures material deprivation, cumulative deprivation, 
child poverty. 

UK, Germany, France, 
the Netherlands 

Nussbaumer 
et al.  

2012 Measuring Energy Poverty: Focusing on 
What Matters 

Derives the Multidimensional Energy Poverty Index 
(MEPI) 

Angola, Benin, Burkina 
Faso, Cameroon, Congo 
Brazzaville, Congo 
Democratic Republic, 
Egypt, Ethiopia, Ghana, 
Guinea, Kenya, Lesotho, 
Liberia, Madagascar, 
Malawi, Mali, Morocco, 
Mozambique, Namibia, 
Niger, Nigeria, Rwanda, 
Senegal, Sierra Leone, 
Swaziland, Tanzania, 
Uganda, Zambia, 
Zimbabwe 

Peichl and 
Pestel  

2013a Multidimensional Affluence: Theory and 
Applications to Germany and the US 

Constructs an index of affluence instead of poverty to 
study affluence in Germany and the US 

Germany, USA 

Peichl and 
Pestel 

2013b Multidimensional Well-Being at the Top: 
Evidence for Germany 

Constructs an index of well-being to study well-being 
in Germany 

Germany 

Roche 2013 Monitoring Progress in Child Poverty 
Reduction: Methodological Insights and 
Illustration to the Case Study of 
Bangladesh 

Measures multidimensional poverty among children in 
Bangladesh and analyze the patterns of poverty 
reduction. 

Bangladesh, South Asia 

Saini 2013  Has Poverty Decreased in Cameroon 
between 2001 and 2007? An Analysis 

Analyses changes in multidimensional poverty in 
Cameroon between 2001 and 2007.  

Cameroon, sub-Saharan 
Africa 
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Based on Multidimensional Poverty 
Measures 

Santos 2013 Tracking Poverty Reduction in Bhutan: 
Income Deprivation Alongside 
Deprivation in Other Sources of 
Happiness 

Measure multidimensional poverty in Bhutan and track 
its trend between 2003 and 2007 

Bhutan, South Asia 

Siegel and 
Waidler 

2012 Migration and Multi-Dimensional 
Poverty in Moldovan Communities 

Examines multidimnesional poverty in 180 Moldovian 
communities in 2011  

Moldova, Eastern 
Europe 

Trani and 
Cannings  

2013 Child Poverty in an Emergency and 
Conflict Context: A Multidimensional 
Profile and an Identification of the 
Poorest Children in Western Darfur 

Measure child poverty Darfur, Sudan 

Tonmoy  2014 An Exercise to Evaluate an Anti-Poverty 
Program with Multiple Outcomes Using 
Program Evaluation 

Evaluates a programme using multidimensional poverty 
measures with difference-in-difference matching 
estimators 

Bangladesh 

Trani et al 2013 The Multidimensionality of Child 
Poverty: Evidence from Afghanistan 

Measures poverty among children in Afghanistan Afghanistan 

Yu 2013 Multidimensional Poverty in China: 
Findings based on the CHNS 

Measures multidimensional poverty in China and track 
its progress between 2000 and 2009. 

China 

Wagle  2014 

 

The Counting-Based Measurement of 
Multidimensional Poverty: The Focus on 
Economic Resources, Inner Capabilities, 
and Relational Resources in the United 
States 

Comparing a two-step process of the dimensional 
approach to AF method 

USA 
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Other papers do not directly implement the AF methodology but engage with it in various ways. 

These include Ferreira (2011), Ravallion (2011b) and others in the Journal of Economic Inequality, vol. 9 

(2011), Ferreira and Lugo (2013), Ravallion (2012), Foster et al. (2010), Betti et al. (2012), Cardenas 

and Carpenter (2013), Larochelle (2014), Berenger et al. (2013), Siminski and Yerokhin (2012), and 

Smith (2012). 

Chapter 6 which follows explains the normative decisions required to apply the AF framework of 

multidimensional poverty measurement empirically. It identifies the different decisions required, 

delineate their normative content and key considerations, and presents alternative courses of action. 
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Glossary 
Note: This figure uses the normalized notation in which weights 𝑤𝑗   sum to 1 and 0 < 𝑘 ≤ 1, 
with the deprivation matrix. 

Adjusted Headcount Ratio (𝑴𝟎) – Interpretation 
The proportion of deprivations that poor people in a society experience, as a share of the deprivations that would be 
experienced if all persons were poor and deprived in all dimensions of poverty. It is the product of two intuitive partial 
indices, the Incidence and Intensity of Poverty (𝐻 × 𝐴). 

Alkire–Foster methodology 
The AF methodology uses dual cutoffs to identify who is poor according to the count of ‘joint’ deprivations a person 
experiences and measures poverty using an extension of the FGT measures. AF measures are consistent with sub-
indices that show the incidence and intensity and dimensional composition of poverty and, for cardinal variables, the 
depth and severity of deprivations in each dimension. The AF methodology can be used with different indicators, 
weights, and cutoffs to create measures for different societies and situations.  

Censored headcount ratios 
The proportion of people who are multidimensionally poor and deprived in each of the indicators. 

Censoring 
This is the process of removing from consideration deprivations belonging to people who do not reach the poverty 
cutoff and focusing in on those who are multidimensionally poor. 

Decomposition 
The process of breaking down the Adjusted Headcount Ratio to show the composition of poverty for different groups. 
Groups might include countries, regions, ethnic groups, urban versus rural location, gender, age or occupational 
categories, or other groups. 

Deprivation cutoffs (𝒛𝒋) 
The achievement levels for a given dimension below which a person is considered to be deprived in a dimension. 

Deprived  
A person is deprived if their achievement is strictly less than the deprivation cutoff in any dimension. 

Functionings  
Functionings are ‘the various things a person may value doing or being’ (Sen 1999: 75). In other words, functionings 
are valuable activities and states that make up people’s wellbeing—such as being healthy and well nourished, being safe, 
being educated, having a good job, and being able to visit loved ones. They are related to resources and income but 
describe what a person is able to do or be with these, given their particular ability to convert those resources into 
functionings. 

Incidence (𝑯) 
The proportion of people (within a given population) who experience multidimensional poverty. This is also called the 
‘multidimensional headcount ratio’ or simply the ‘headcount ratio’. Sometimes it is called the ‘rate’ or ‘incidence’ of 
poverty. It is the number of poor people 𝑞 over the total population 𝑛. 

Intensity (𝑨) 
The average proportion of deprivations experienced by poor people (within a given population) or the average 
deprivation score among the poor. The intensity is the sum of the deprivation scores, divided by the number of poor 
people. 

Percentage contribution of each indicator 
The extent to which each weighted indicator contributes to overall poverty. 

Poor  
A person is identified as poor if their deprivation score (the sum of their weighted deprivations) is at least as high as the 
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poverty cutoff. 

Poverty cutoff (𝒌) 
This is the cutoff or cross-dimensional threshold used to identify the multidimensionally poor. It reflects the 
proportion of weighted dimensions a person must be deprived in to be considered poor. Because more deprivations (a 
higher deprivation score) signifies worse poverty, the deprivation score of all poor people meets or exceeds the poverty 
cutoff. 

Uncensored or raw headcount ratios 
The deprivation rates in each indicator, which includes all people who are deprived, regardless of whether they are 
multidimensionally poor or not. 
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Box 5.7 Alkire et al. (2013): Alkire et al. (2013):  Alternative Notations for the AF Method 

 Normalized Weighting Structure Non-normalized Weighting Structure 
Relative values or weights 𝑤𝑗 > 0 and  𝑤𝑗𝑑

𝑗=1 = 1. 𝑤𝑗 > 0 and  𝑤𝑗𝑑
𝑗=1 = 𝑑. 

Methods Method I Method II Method III Method IV (AF 2011a) 
The deprivation status score 
or deprivation value 𝑔𝑖𝑗

0 =  1 if deprived
0 otherwise

  𝑔 𝑖𝑗0 =  𝑤𝑗 if deprived
0 otherwise

  𝑔𝑖𝑗
0 =  1 if deprived

0 otherwise
  𝑔 𝑖𝑗0 =  𝑤𝑗 if deprived

0 otherwise
  

Deprivation score entry for 
person 𝑖 𝑐𝑖 =  𝑤𝑗𝑔𝑖𝑗

0
𝑑

𝑗 =1

;  0 ≤ 𝑐𝑖 ≤ 1 𝑐𝑖 =  𝑔 𝑖𝑗0
𝑑

𝑗 =1

;  0 ≤ 𝑐𝑖 ≤ 1 𝑐𝑖 =  𝑤𝑗𝑔𝑖𝑗
0

𝑑

𝑗 =1

;  0 ≤ 𝑐𝑖 ≤ 𝑑 𝑐𝑖 =  𝑔 𝑖𝑗0
𝑑

𝑗 =1

;  0 ≤ 𝑐𝑖 ≤ 𝑑 

Poverty cutoff 0 <  𝑘 ≤  1 0 <  𝑘 ≤  1 0 <  𝑘 ≤  𝑑 0 <  𝑘 ≤  𝑑 
Censored deprivation score 
entry for person 𝑖 0 ≤ 𝑐𝑖(𝑘) ≤ 1 0 ≤ 𝑐𝑖(𝑘) ≤ 1 0 ≤ 𝑐𝑖(𝑘) ≤ 𝑑 0 ≤ 𝑐𝑖(𝑘) ≤ 𝑑 

Headcount ratio 𝐻 = 𝑞/𝑛, 𝐻 = 𝑞/𝑛, 𝐻 = 𝑞/𝑛, 𝐻 = 𝑞/𝑛, 

Intensity 𝐴 =
1
𝑞  𝑐𝑖(𝑘)

𝑛

𝑖=1
 𝐴 =

1
𝑞  𝑐𝑖(𝑘)

𝑛

𝑖=1
 𝐴 =

1
𝑞 𝑐𝑖(𝑘)/

𝑛

𝑖=1
𝑑 𝐴 =

1
𝑞 𝜇(𝑔 𝑖⋅0(𝑘))

𝑛

𝑖=1
 

𝑀0  as the product of 
incidence and intensity 𝑀0 = 𝐻 × 𝐴 𝑀0 = 𝐻 × 𝐴 𝑀0 = 𝐻 × 𝐴 𝑀0 = 𝐻 × 𝐴 

𝑀0 as the sum of weighted 
deprivations across all 
people and all dimensions 

1
𝑛  𝑤𝑗𝑔𝑖𝑗

0 (𝑘)
𝑑

𝑗 =1

𝑛

𝑖=1

 𝜇 𝑔 0 𝑘  × 𝑑 =
1
𝑛  𝑔 𝑖𝑗0 (𝑘)

𝑑

𝑗 =1

𝑛

𝑖=1

 1
𝑛𝑑  𝑤𝑗𝑔𝑖𝑗

0 (𝑘)
𝑑

𝑗 =1

𝑛

𝑖=1

 𝜇 𝑔 0 𝑘  =
1
𝑛𝑑  𝑔 𝑖𝑗0 (𝑘)

𝑑

𝑗 =1

𝑛

𝑖=1

 

𝑀0 as the sum of censored 
deprivation scores across all 
people 

=
𝑞
𝑛 ×

1
𝑞 𝑐𝑖 𝑘 

𝑞

𝑖=1

 =
𝑞
𝑛 ×

1
𝑞 𝑐𝑖 𝑘 

𝑞

𝑖=1

 =
𝑞
𝑛 ×

1
𝑞 𝑐𝑖 𝑘 

𝑑

𝑞

𝑖=1

 =
𝑞
𝑛 ×

1
𝑞 𝑐𝑖 𝑘 

𝑑

𝑞

𝑖=1

 

𝑀0  as the mean of each 
person’s deprivation score 𝑀0 =

1
𝑛   𝑤𝑗𝑔𝑖𝑗

0 (𝑘)
𝑑

𝑗=1

 
𝑛

𝑖=1

 𝑀0 =
1
𝑛  𝑔 𝑖𝑗0 (𝑘)

𝑑

𝑗 =1

𝑛

𝑖=1

 𝑀0 =
1
𝑛  1

𝑑 𝑤𝑗𝑔𝑖𝑗
0 (𝑘)

𝑑

𝑗 =1

 
𝑛

𝑖=1

 𝑀0 =
1
𝑛 𝜇(𝑔 𝑖⋅0(𝑘))

𝑛

𝑖=1

 

Censored Headcount Ratio 
of dimension 𝑗 ℎ𝑗 (𝑘) = 𝜇(𝑔⋅𝑗

0 (𝑘)) ℎ𝑗 (𝑘) =
𝜇(𝑔 ⋅𝑗0 (𝑘))

𝑤𝑗
 ℎ𝑗 (𝑘) = 𝜇(𝑔⋅𝑗

0 (𝑘)) ℎ𝑗 (𝑘) =
𝜇(𝑔 ⋅𝑗0 (𝑘))

𝑤𝑗
 

𝑀0 as the weighted sum of 
censored headcounts  𝑤𝑗ℎ𝑗 (𝑘)

𝑑

𝑗 =1

=  𝑤𝑗𝜇(𝑔⋅𝑗
0 (𝑘))

𝑑

𝑗=1

  𝑤𝑗ℎ𝑗 (𝑘)
𝑑

𝑗 =1

=  𝜇(𝑔 ⋅𝑗0 (𝑘))
𝑑

𝑗=1

  𝑤𝑗
𝑑 ℎ𝑗 (𝑘)

𝑑

𝑗 =1

=  𝑤𝑗
𝑑 𝜇(𝑔⋅𝑗

0 (𝑘))
𝑑

𝑗 =1

  𝑤𝑗
𝑑 ℎ𝑗 (𝑘)

𝑑

𝑗 =1

=
1
𝑑 𝜇(𝑔 ⋅𝑗0 (𝑘))

𝑑

𝑗 =1

 

Percentage contribution of 
dimension 𝑗 to 𝑀0  

𝑤𝑗 ×
𝜇(𝑔⋅𝑗

0 (𝑘))
𝑀0

 
𝜇(𝑔 ⋅𝑗0 (𝑘))

𝑀0
 

𝑤𝑗
𝑑 ×

𝜇(𝑔⋅𝑗
0 (𝑘))
𝑀0

 
𝜇(𝑔 ⋅𝑗0 (𝑘))
𝑑 × 𝑀0

 

Note: Method I is the mainly used throughout this chapter. Method IV is described in Box 5. and Box 5. and follows the notation used in Alkire and Foster (2011a). Methods II is a 
variant of Method I, equivalent to Method IV in that weights are incorporated into the entries of the matrix, creating the weighted deprivation matrix, and thus do not explicitly appear in 
formulas. Method III is a minor variant of Method IV, equivalent to Method I in the sense that weights are kept outside the deprivation matrix and thus explicitly appear in formulas. 
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