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Testing for stochastic dominance among additive, multivariate
welfare functions with discrete variables1
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ABSTRACT

A�ourishing literature on robustness in multidimensional welfare and poverty
comparisons has aroused the interest on multidimensional stochastic dominance.
By generalizing the dominance conditions of Atkinson and Bourguignon (1982)
this paper o¤ers complete conditions, alternative to those proposed by Duclos et
al. (2006a,b). We also show how to test these conditions for discrete variables
extending the non-parametric test by Anderson (1996) to multiple dimensions.
An empirical application illustrates these tests.
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1. Introduction

A recent literature on multidimensional wellbeing emphasizes comparing individuals or
groups with welfare functions which aggregate separate dimensions of well-being into a single
indicator. Such dimensions can include consumption items, health attributes and, in general,
any other aspect of wellbeing that "people have reason to value" (Sen, 2001). Since several

1I am very grateful to Ian Crawford for his comments and support. I would also like to thank Jean-Yves
Duclos, Sabina Alkire and participants at the OPHI workshop on Robustness in Multdimensional Welfare
Analysis for their valuable comments. I am very grateful to Lorenzo Oimas for helping me with securing the
dataset.



such evaluative functions can be proposed, the choices of functional forms, weights attached
to dimensions and other details may a¤ect the consistency of the rankings of societies or in-
dividuals. In the twin literature of multidimensional poverty an additional source of ranking
inconsistency is the choice of multidimensional poverty line and criterion for the identi�ca-
tion of the poor (Bourguignon and Chakravarty, 2002; Duclos et al., 2006). Two approaches
have been proposed to provide robust welfare comparisons in the presence of such range of
choices: one is to conduct sensitivity analysis of a given indicator to gauge the impact of
a change in an aspect of the indicator (e.g. the weights) on its ranking performance. An-
other approach is to provide multidimensional stochastic dominance conditions which state
the conditions under which a broad class of welfare functions consistently rank multivariate
distributions of individuals or societies. Such exercise has two components: the dominance
conditions themselves and the corresponding statistical tests to probe them empirically.

To date there is a broad literature both on stochastic dominance conditions for compar-
isons of welfare indicators2, poverty indicators3 , Lorenz curves4 , even economic mobility
(Fields et al., 2002). Similarly statistical tests abound (e.g. Anderson, 1996; Xu and Os-
berg, 1998; Davidson and Duclos, 2000; Barrett and Donald, 2003; Thuysbaert and Zitikis,
2005; Linton et al., 2005; Bennett, 2008). They all work with univariate distributions. For
multidimensional comparisons the �rst package of dominance conditions and corresponding
statistical test was provided by Duclos et al. (2006,2007), in turn based on the theory laid
out by Davidson and Duclos (2000). Notwithstanding the soundness of their technique, the
conditions of Duclos et al. (2006,2007) do not cover all the potential signs of the cross-
derivatives of the welfare functions. By contrast the older conditions laid out by Atkinson
and Bourguignon (1982) cover di¤erent signs of the cross-derivatives. In this paper we show
with a bivariate illustration that the conditions by Atkinson and Bourguignon (1982) in-
clude all the conditions of Duclos et al. (2006) and are more complete in that they also
consider all possibilities in terms of signs of cross-derivatives.5 Thereby this paper provides
justi�cation to �nding alternative statistical techniques to test the conditions of Atkinson
and Bourguignon which are generalized, in this paper, to n dimensions and up to third-order

2For instance, Atkinson and Bourguignon (1982), Muller and Trannoy (2003).

3For instance, Foster and Shorrocks (1988), Davidson and Duclos (2000), Duclos and Makdissi (2005),
Duclos et al. (2006).

4For instance, Dardanoni and Forcina (1999)

5On the other hand, the robustness work of Davidson and Duclos (2000) as well as Duclos et al. (2006)
is not restricted to dominance conditions and tests. They also show how to estimate consistently critical
frontiers, i.e. the points at which cumulative distributions or dominance surfaces cross.
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stochastic dominance. The importance of the sign of the cross-derivatives is illustrated with
an example from the family of association-sensitive welfare measures (Seth, 2009).

In this paper I propose a test of multidimensional stochastic dominance suitable for
the conditions of Atkinson and Bourguignon, based on Anderson�s (1996), Ibbot�s (1998)
and Crawford�s (2005) nonparametric tests. The test is useful for ordinal, discrete variables
since it is based on the standard errors of multivariate, multinomial distributions. Besides the
application to ordinal, discrete variables does not require using the trapezoidal approximation
to the integral areas which are a source of inconsistency (Barret and Donald, 2003).

In multidimensional welfare comparisons there is no way to escape the problem of choos-
ing a welfare function and therefore robustness analysis, e.g. stochastic dominance, is war-
ranted.6 As Crawford (2005) notes, real income comparisons, for instance, are not good
substitutes. In these comparisons a vector of household demands and demographic charac-
teristics is aggregated using market prices as weights for the marketed goods and adjusted by
an equivalence scale to re�ect di¤erences in household members�composition like ages and
size (Sen, 1979). Real incomes are not useful as subtitutes to welfare functions, even assum-
ing that real incomes could be calculated without controversy or di¢ culty7 for at least two
reasons: �rstly, non-expenditure attributes, e.g. a long and healthy lifetime, being educated,
etc. are valued by people on top of consumption items (Sen, 2001). A counter-argument
would claim that the service �ow of such non-expenditure items could be included in the
real income calculation with the appropriate prices, should the exercise be possible. How-
ever, and that is the second reason, even in such a scenario the resulting metric would be a
linear combination of the welfare-enhancing variables ranging from the consumption items
to the non-expenditure ones (e.g. political freedoms) thus implying a perfect degree of sub-
stitutability across wellbeing dimensions. Practicioners in multidimensional welfare analysis
are not eager to limit the scope of welfare function to such restrictive option.

The paper proceeds as follows. In section 2 a brief introduction to the conditions of
Duclos et al. (2006) is provided. Then I introduce the conditions of Atkinson and Bour-
guignon and its extensions by Crawford (2005) to third order of dominance, in order then

6Notice that a welfare function is di¤erent from a utility function in that with the former there is no
intent to represent the preferences of the invidual under evaluation.

7That is, for instance, if equivalence scales could be estimated, if relevant prices are observed and they
re�ect consumers�valuation of the goods, they do not vary across households because of preferences toward
risk, regional location, productivity di¤erentials in non-marketed goods, etc.)
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to show their completeness in terms of accounting for di¤erent signs of the cross-partial
derivatives and in terms of the ability of the framework to replicate the conditions of Duc-
los et al. (2006) in the context of welfare functions. I illustrate the importance of having
conditions which ensure robustness to the sign of the cross-derivative with an example in-
volving association-sensitive welfare functions. In the third section I propose a test for the
stochastic dominance conditions suitable for discrete variables. The estimators and tests for
multivariate, multinomial distributions corrects Crawford�s (2005) multidimensional exten-
sion of Anderson�s (1996) univariate test for inconsistency in the trapezoidal approximation
by being tailored exclusively for discrete variables and multinomial distributions. Up to
section 3 the analysis is performed in a bivariate setting. Section 4 discusses the extension
of these tests to higher dimensions with an important contribution in the form of a simple
but accurate rule for stacking the probabilities of a multidimensional joint distribution in
a matrix, which renders the estimation of the statistics substantially easier. Section 5 ap-
plies these tests to a three-dimensional setting using data from Peru. Section 6 draws some
conculsions and outlines future research ideas.

2. Multivariate stochastic dominance conditions

So far the literature on multidimensional stochastic dominance has focused on the class
of additive welfare functions when deriving conditions under which all functions belonging
to speci�c subclasses of this additive class rank individuals, households, societies or social
states unanimously. The additivity property of this general class means that total welfare is
measured by the welfare function as the sum of the contributions to welfare of all the economic
units involved (e.g. households). These contributions are given by functions evaluated on
the vector space of wellbeing-enhancing variables. Following Crawford (2005) the general
class � of additive welfare function is de�ned as:

� =

�
W (F ) j W (F ) =

Z
:::

Z
 (x1; :::; xD) dF (x1; :::; xD)

�
(1)

where the function  (x1; :::; xn) : Rn ! R measures the contribution of an economic
unit (e.g. a household, an individual) to total welfare. Notice that  is not a utility function.
Therefore the welfare functions in class � are not utilitarian but could be so if  were de�ned as

a utility function. Societies ranked by these welfare functions can have any joint distribution
function. The set of all possible distributions, F , is de�ned as:
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F =

8<:
F : Rn ! [0; 1]

F nondecreasing and continuous
F (0; :::; 0) = 0;F (a1; :::; an) = 1

9=; (2)

where the range of xi is assumed to be [0; ai]. I also de�ne: f (x1; :::; xn) =
@nF (x1;:::;xn)
@x1:::@xn

:Since
one of the key applications of multidimensional stochastic dominance is on poverty compar-
isons I follow Duclos et al. (2006) in presenting a class of social poverty functions similar to
� in (1):

� =

�
P (�) j P (�) =

Z
:::

Z
� (x1; :::; xn;�) dF (x1; :::; xn)

�
(3)

where � : Rn ! R j @�
@xi

> 0 is an identi�cator function which de�nes whether an
economic unit is poor or not depending on the values of x. Moreover � (x1; :::; xn) = 0 de�nes
the poverty hyperline over the welfare-enhancing variables space. Whenever a unit�s values
for the variables imply � (x1; :::; xn) 6 0 the unit is classi�ed as poor and � (x1; :::; xn;�) > 0.
Otherwise � (x1; :::; xn;�) = 0. Thereby the focus axiom is ful�lled (Duclos et al. 2006, p.
947).

In the bi-dimensional case Duclos et al. (2006) also de�ne a bi-dimensional stochas-
tic dominance surface which is at the core of their dominance conditions and resembles a
multiplicative FGT poverty index8 :

P�1;�2 (z1; z2) =

Z z1

0

Z z

0

(z1 � x1)
�1 (z2 � x2)

�2 dF (x1; x2) (4)

where z1and z2 are univariate poverty lines.

2.1. The conditions of Duclos et al. (2006)

The stochastic dominance conditions of Duclos et al. (2006) relate the consistency of
rankings of a subclass of additive poverty measures to a relationship between the dominance
surfaces of two samples. For di¤erent values of �1and �2 di¤erent subclasses of poverty func-
tions rank consistently. As the alpha parameters increase from zero upward more conditions

8FGT stands for Foster, Greer and Thorbecke (1984).
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are imposed on the derivatives of the poverty functions and thus the subclass is reduced.
Duclos et al. �nd the following general result for the bivariate case:

�P (�) > 0;8P (�) 2 ��1+1;�2+1 $ �P�1;�2 > 08 (x1; x2) 2 � (��) (5)

where �P = �PA � �PB, with A and B being two samples, � (��) denotes a set of
(x1; x2) such that �

� (x1; x2) 6 0 and �� is the maximal poverty hyperline. ��1+1;�2+1 is an
additive subclass. They illustrate with the following two examples of subclasses:

�1;1 =

8>>><>>>:P (�) j
� (�) @ � (��)

� (x1; x2; �) = 0;whenever � (x1; x2) = 0
�xi � 0 8xi

�x1x2 � 0 8x1; x2

9>>>=>>>; (6)

�2;1 =

8>>><>>>:P (�) j
P (�) 2 �1;1

�x1 (x1; x2; �) = 0;whenever � (x1; x2) = 0
�x1x1 � 0 8x1

�x1x1x2 � 0 8x1; x2

9>>>=>>>; (7)

The superscripts on the � denote derivatives (e.g. �xi = @�
@xi
). Notice that these con-

ditions allow for increasing the order of dominance dimension-by-dimension as oppossed to
just increasing it for all dimensions at the same time. These are the �rst results in the mul-
tidimensional dominance literature to show these extensions.9 However as I show below the
conditions presented by Atkinson and Bourguignon (1982) and Crawford (2005) also allow
for increasing the order of dominance in the same way.

2.2. The conditions of Atkinson and Bourguignon (1982), Crawford (2005)

and beyond

In this section I summarize the conditions of Atkinson and Burguignon for the bivariate
case (both those derived and listed by the authors), and the extension to third-order domi-

9The conditions in Duclos et al. (2006a) are very similar. For instance, substitutability between pairs of
discrete and continuous variables is also considered in the de�nition of the class of poverty measures. On
the other hand these conditions are more sophisticated in their treatment of di¤erential poverty lines for
di¤erent values of the discrete variables.
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nance by Crawford (2005). Then I show that these conditions allow for increasing the order of
dominance dimension-by-dimension. The importance of having conditions for either sign of
the cross-derivatives of  is illustrated with an example using a class of association-sensitive
welfare functions.

Let�s start by de�ning the di¤erence in welfare between two samples as:

�W =

Z a1

0

Z a2

0

 (x1; x2)�f (x1; x2) dx2dx1 (8)

Following Atkinson and Bourguignon (1982) the marginal distributions of F (x1; x2)
are de�ned as Fi (xi) . The following expressions are also de�ned: K (x1; x2) � F1 (x1) +

F2 (x2)�F (x1; x2), H (x1; x2) �
R x1
0

R x2
0
F (s; t) dsdt, Hi (xi) �

R xi
0
Fi (s) ds, and L (x1; x2) �R x1

0

R x2
0
K (s; t) dsdt.

2.3. First-order dominance results

The results are the following:

 2 	� $ (�W � 0$ �Fi (xi) � 08i = 1; 2 ^�F (x1; x2) � 0 8x1; x2) (9)

 2 	+ $ (�W � 0$ �Fi (xi) � 08i = 1; 2 ^�K (x1; x2) � 0 8x1; x2) (10)

 2 	1 $ (�W � 0$ �Fi (xi) � 08i = 1; 2 ^�F (x1; x2) � 0 ^�K (x1; x2) � 0 8x1; x2)
(11)

The result in (9) is due to Hadar and Russel (1974).10 The result in (10) is due to Levy
and Paroush (1974). 	� is a subclass of aditive welfare measures: 	� =

�
 :  i � 0 ^  ij � 0

	
,

where  i =
@ 
@xi
. While 	+ =

�
 :  i � 0 ^  ij � 0

	
and 	1 = 	� [	+ = f :  i � 0g.

10They show that the result can be extended to n-dimensions. Notice that �F (x1; x2) � 0 implies
�Fi (xi) � 08i = 1; 2:
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2.4. Second-order dominance results

Second-order dominance corresponds to subclasses of welfare functions which represent
preferences for mean-preserving, inequality-reducing transfers. The results are the following:

 2 	�� $ (�W � 0$ �Hi (xi) � 08i = 1; 2 ^�H (x1; x2) � 0 8x1; x2) (12)

 2 	++ $ (�W � 0$ �Hi (xi) � 08i = 1; 2 ^�L (x1; x2) � 0 8x1; x2) (13)

 2 	2 $ (�W � 0$ �Hi (xi) � 08i = 1; 2 ^�H (x1; x2) � 0 ^�L (x1; x2) � 0 8x1; x2)
(14)

The results in (12) and (13) are due to Atkinson and Bourguignon (1982). 	�� =�
 :  2 	� ^  ii � 0;  iij � 0;  iijj � 0

	
, 	++ =

�
 :  2 	+ ^  ii � 0;  iij � 0;  iijj � 0

	
,

and 	2 = 	�� [	++ = f :  2 	1 ^  ii � 0g.

2.5. Third-order dominance results

Crawford (2005) extended the results up to the third order of dominance since it has re-
ceived attention in the univariate literature as corresponding to subclasses of welfare function
which favour mean-preserving, inequality-reducing transfers more when these happen at the
lower end of the distributions. Let J (x1; x2) �

R x1
0

R x2
0
H (s; t) dsdt, Ji (xi) �

R xi
0
Hi (s) ds,

and M (x1; x2) �
R x1
0

R x2
0
L (s; t) dsdt. The results are the following:

 2 	��� $ (�W � 0$ �Ji (xi) � 08i = 1; 2 ^�J (x1; x2) � 0 8x1; x2) (15)

 2 	+++ $ (�W � 0$ �Ji (xi) � 08i = 1; 2 ^�M (x1; x2) � 0 8x1; x2) (16)

 2 	3 $ �(W � 0$ �Ji (xi) � 08i = 1; 2 ^�J (x1; x2) � 0 ^�M (x1; x2) � 0 8x1; x2)
(17)
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	��� = f :  2 	�� ^  1112;  1122 � 0;  11122;  11222 � 0;  111222 � 0g,

	+++ = f :  2 	++ ^  1112;  1122 � 0;  11122;  11222 � 0;  111222 � 0g,

and 	3 = 	��� [	+++ = f :  2 	2 ^  1112;  11122;  11222 � 0g.

The results shown so far are for conditions in which the order of dominance is raised
simultaneously for all dimensions. In the next subsection I illustrate the potential of this
approach to produce more stochastic dominance conditions for additional subclasses.

2.6. More results changing the order of dominance dimension-by-dimension

The following result is analogue to the result of Duclos et al. (2006) in (5), for subclass
(7) :

 2 	�1 $
�
�W � 0$ �F2 (x2) � 0 ^�H1 (x1) � 0 ^

Z x1

0

�F (t; x2) dt � 0 8x1; x2
�
(18)

where 	�1 = f :  2 	� ^  11 � 0 ^  112 � 0g. A similar condition can be obtained
for the following subclass: 	�2 = f :  2 	� ^  22 � 0 ^  122 � 0g. The derivation is in
the Appendix 1. To relate these results to those of Duclos et al. (2006) W needs to be
regarded as an aggregate poverty function and the signs of the derivatives in the subclass
have to be reversed accordingly.

2.7. Relevance of the conditions for the literature on multidimensional welfare
indicators: an example

Seth (2009) has recently characterized a class of association-sensitive welfare indices
based on general means (e.g. similar to CES functions in the traditional microeconomics
literature). The index depends on two parameters, � and �. When �; � 6= 0 the index is:

W =

24 1
N

NX
n=1

"
DX
d=1

adx
�
nd

#�
�

35 1
�

8�; � 6= 0 (19)

Such index strictly increases whenever there is increased association among the dimen-
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sions if and only if � < � � 1 (Seth, 2009, p.12). Therefore such parameter range is worth
considering if a welfare indicator with that property is desired for a given welfare evalu-
ation. Now consider the case with just two dimensions (variables) and � = 1. It yields:

W�=1 = 1
N

PN
n=1

h
a1x

�
n1 + a2x

�
n2

i 1
�
. De�ne vn =

h
a1x

�
n1 + a2x

�
n2

i 1
�
. The cross-partial deriv-

ative is:

v12 �
@2vn

@xn1@xn2
= � (1� �) v��n a1a2 (xn1xn2)

��1 (20)

If xnd; ad � 08n; d, then (�1 < � < 0 _ � > 1) $ v12 < 0 and 0 < � < 1 $ v12 > 0.
Since the choice of � a¤ects the cross-partial derivative the ranking performance of these
association-sensitive indicators may or may not be robust to the choice of �. It depends on
the pair of compared samples. For example imagine x1 and x2 take only two values: a low
and a high one. Imagine society A and society B have the following joint distributions of x1
and x2 (lowest values are on the top-left corners):

A

0:1 0:2

0:2 0:5

B

0:2 0:2

0:2 0:4
(21)

These two societies are ranked unanimously by the aforementioned association-sensitive
measures regardless of the choice of � within the interval ]�1; 1[, because condition (11) is
ful�lled. However such is not the case for societies C and D whose joint distributions are the
following:

C

0:2 0:3

0:3 0:2

D

0:3 0:2

0:2 0:3
(22)

In this case condition (9) is ful�lled but not (10). Therefore association-sensitive mea-
sures of the type described above only rank C and D consistently as long as the choice of �
falls within the interval ]�1; 0[. In other words there is no guarantee that di¤erent choices
of � within the interval ]�0; 1[ do not reverse the ranks attributed by the welfare indicator.
The analysis illustrated by this example requires an approach o¤ering conditions for di¤erent
signs of the cross-partial derivatives.
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3. Estimation and inference

In this section I propose a test of multidimensional stochatic dominance for the above
conditions suitable for discrete variables. The test is a corrected version of the extension
that Crawford (2005) made of Anderson�s (1996) univariate test. Both Anderson�s and
Crawford�s tests become inconsistent when applied to continuous variables for testing second
and higher orders of dominance. (Barret and Donald, 2003) For those tests of second-to-
higher dominance, the trapezoidal approximations to the areas under the integrals of the
cumulative distribution functions are the source of inconsistency. This problem is corrected
when the formulas for the statistics are altered in order to estimate the areas under the
cumulative distributions of exclusively discrete, ordinal variables. For each condition the
idea is to construct estimates of the distributional di¤erences, e.g. �F (x1; x2), depending
on the dominance condition under scrutiny.

The tests presented here are di¤erent to those of Duclos et al. (2007). The latter tests
are for a combination of one continuous variable and several discrete ones (although it could
be extended to several continuous variables). Those tests are related to a version of the
conditions by Duclos et al. (2006) that incorporates discrete variables. As with their �rst
set of conditions, these conditions consider dimensions to be substitutes. Besides Duclso et
al. (2007) rely on the estimation of powers of the poverty gap with respect to the continuous
variable as their statistics. In the tests presented below the statistics are based on the
probabilities of the multivariate multinomial distributions of well-being.

3.1. Extending Anderson�s test for applications to discrete variables

Let�s start with the bivariate case.11 Without loss of generality, let x1 and x2 be two
discrete variables taking values on the natural line in the range [1; Ck]8k = 1; 2. The number
of observations in cell ij is nij so that:

PC1
i=1

PC2
j=1 nij = n:The probability of being in cell

ij is: pij � P fx1 = i ^ x2 = jg. Its empirical counterpart is:

cpij = 1

n

nX
k=1

I
�
xk1 = i ^ xk2 = j

�
(23)

As Formby et al. (2004) show, the empirical probabilities of multinomial distributions

11Ibbot(1998) also described a test for �rst-order dominance in bivariate distributions. Here I describe
tests for �rst and higher orders of dominance.
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are asymptotically distributed as normal with mean � and variance 
, where:

� =

264 p11 � � � p1C2
...

. . .
...

pC11 � � � pC1C2

375 (24)


 =

26664
p11 (1� p11) �p11p12 � � � �p11pC1C2
�p11p12 p12 (1� p12) � � � �p12pC1C2
...

...
. . .

...
�p11pC1C2 �p12pC1C2 � � � pC1C2 (1� pC1C2)

37775 (25)

The multidimensional, multinomial distributions of two samples can be compared by
stacking the probabilities in respective column vectors, cPA and cPB and denoting the di¤er-
ence as:

bV = �cPA � cPB
�

(26)

Under the null hypothesis of homogenenous distributions:

bV d! N

�
0;
nA + nB

nAnB



�
(27)

The extensions of Anderson (1996)�s test are derived straightforwardly to test for the
distributional conditions by noticing that the latter are all linear combinations of the prob-
abilities in (26). The following examples illustrate the approach:

Estimation of �F , �H, �J :

In the bivariate case a straightforward estimation follows by rewriting bV as a matrix,bVC1;C2, and by considering Lr to be a r-dimension, lower triangular matrix of ones:
b�Z = [LC1 ]

Z bVC1;C2 �L0C2�Z (28)

Such that: b�1 = d�F , b�2 = d�H, b�3 =d�J . Notice that for (discretized) continuous
variables these estimations become imprecise when z � 2. A better approximation, for
instance, is the trapezoidal one (Anderson, 1996; Crawford, 2005). However even such
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approximation has been deemed to render tests potentially inconsistent (Barrett and Donald,
2003). That is why I restrict the application of this extended test to ordinal, discrete variables
for whom no special assumption is made regarding any underlying continuous latent variable
with an unknown distribution function and no meaningful distance is attributed to the
di¤erences in values.

Estimation of �Fi, �Hi, �Ji:

In the bivariate case the estimation again is straightforward:

b�Z
1 = [LC1 ]

Z bVC1;C21C2 (29)

where 1r is a column vector of ones of dimension r. Now: b�1
1 =

d�F1, b�2
1 = [�H1,b�3

1 =
d�J1. And:

b�Z
2 = 1

0
C1
bVC1;C2 �L0C2�Z (30)

Hence: b�1
2 = d�F2, b�2

2 =[�H2, b�3
2 =d�J2.

Estimation of �K, �L, �M :

b�Z
1+2�12 = [LC1 ]

Z�1
h
�IC1

... IC1
... IC1

i
2666664

LC1 bVC1;C2L0C2
� � �

LC1 bVC1;C21C210C2
� � �

1C11
0
C1
bVC1;C2L0C2

3777775
�
L0C2

�Z�1
(31)

Where Ir is an identitiy matrix of dimension r. b�1
1+2�12 =

d�K, b�2
1+2�12 =

d�L,b�3
1+2�12 =

d�M
Estimation of

Z x1

0

�F (t; x2) dt (8x1; x2) :

It follows from b�1 (28): b�1 1
2
1 = LC1 b�1
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The respective standard errors of these functions, which are linear combinations of the
probabilities, are based on the result in (27). For instance for the family b�Z they are the

square root of the elements of var
�b�Z

�
:

var
�b�Z

�
= [LC2 ]

Z 
 [LC1 ]
Z

�
nA + nB

nAnB
b
��L0C2�Z 
 �L0C1�Z (32)

where the probability elements of b
, cpijH , are estimated under the null hypothesis of
homogeneous distributions for A and B, following Anderson (1996):

cpijH = nA

nA + nB
cpijA + nB

nA + nB
cpijB (33)

At this point, the extension of Anderson�s test involves constructing z-statistics12 by di-

viding each element of the b� by their respective standard errors in the diagonal ofrvar
�b��.

These statistics are used for a test of the dominance conditions of the previous section, in
which the null hypothesis is of homogeneity or common distribution and the alternative is
of dominance. For instance, using the convention adopted in Anderson (1996) and Bishop
et al. (1989), for condition (9) we test Ho : �F (:) = 0 against H1F : �F (:) � 0. Rejection
of Ho requires:

�F (x1; x2) � 0 8x1; x2 (34)

9x1; x2 j �F (x1; x2) < 0 (35)

These criteria, (34) and (35) mean that no element of the matrix d�F is signi�cantly
greater than zero and at least one element is signi�cantly less than zero13. Rejection of
the null in favour of this alternative hypothesis requires that there exit both signi�cantly
positive and signi�cantly negative elements in d�F (Anderson, 1996). Note also that the
statistics based on the marginal distributions (�Fi, �Hi, �Ji) are those of Anderson�s tests

12These statistics have an asymptotic t-distribution with in�nite degrees of freedom.

13There is also a further alterantive hypothesis of indeterminancy. For instance in the case of testing
condtion (9): it is H1F : �F (:) � ^ � 0:
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for univariate distributions should they be applied to discrete variables. Several null and
alternative hypotheses for the dominance conditions in the bivariate and the univariate cases
are in tables 6 and 7. Since multiple comparisons are involved for each b�, corresponding to
each of its elements, and each involves a comparison in means, I follow Anderson (1996) and
Crawford (2005) in using the critical values from the studentised maximum modulus (SMM)
distribution (Stoline and Ury, 1979) for C1C2� 1 contrasts when Z = 1, and C1C2 contrasts
when Z � 2.

These tests are symmetric in that whenever one can not reject Ho in favour of the alter-
native hypotheses for a given criterion of dominance, one can not establish such dominance
in the way the di¤erences in b� have been constructed (e.g. HA�HB), but one can establish
dominance in the reverse order for the same subclass of welfare functions.

4. Extensions to higher dimensions

In the preceding sections I have discussed the formation of estimators of the functions
of the probability distributions and for their respective covariance matrices in the cases of
discrete variables. These ideas also apply to higher dimensions. Dominance conditions for
three dimensions have been provided by Muller and Trannoy (2003). For D dimensions
Crawford (2005) shows that the �rst-order dominance conditions stem from:

�W = �
DX
i=1

Z ai

0

 i�Fidxi +
D�1X
i=1

DX
j=i+1

Z aj

0

Z ai

0

 ij�Fijdxidxj � (36)

D�2X
i=1

D�1X
j=i+1

DX
k=j+1

Z ak

0

Z aj

0

Z ai

0

 ijk�Fijkdxidxjdxk � � �

+(�1)D
Z aD

0

� � �
Z ai

0

 i:::D�Fdxi : : : dxD

For �rst-order dominance there are 2D�1 partial derivatives of  to consider: D partial
derivatives of the function with respect to individual dimensions, which are assumed positive
by monotonicity, and 2D�D�1 cross-partial derivatives to which signs have to be assigned.
In order to implement the test for discrete variables to D dimensions I propose following
these steps:
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1. Stack the probabilities using as a guide a matrix of positions which is in turn the
Kronecker product of the vectors of positions of individual variables. The vector of
positions, vpi simply shows the location of every probability in an ordinal way (i.e. the
probability of having the lowest value comes �rst at the left corner, then followed by
the second lowest and so on). Therefore if the number of possible values for variable xi
(i = 1; :::; D) is Ci then the length of the vector of positions is Ci and its elements are
the natural numbers from 1 to Ci, each with an indication that these numbers belong
to variable i (this is helpful to pinpoint the position of the joint probabilities [pjk:::z =
1
n

Pn
A=1 I

�
xA1 = j ^ xA2 = k : : : ^ xAD = z

�
, in the matrix of positions. For instance if

we have three dimensions, 1; 2; 3, with C1 = 2; C2 = 2; C3 = 3, then the matrix of
positions, MP , is calculated as follows:

MP = vp01 
 vp2 
 vp03 (37)

The actual order does not matter much as long as the rest of the procedure is kept con-
sistently, but it is recommended to transpose non-adjacent vectors. The matrix of postions
in (37) looks like:

MP =

�
111213 � � � 111233 � � � � � � 211233

112213 � � � � � � � � � � � � 212233

�
(38)

For instance the probability corresponding to the top right position in (38) is dp123 =
1
n

Pn
A=1 I

�
xA1 = 1 ^ xA2 = 2 ^ xA3 = 3

�
. The matrix of probabilities, cPA, is therefore con-

structed following MP and then de�ne bV as in (26).

1. In order to accumulate the probabilities to generate b�z; b�z
1; b�z

1+2�12, as well as other
functions relevant to cases with more than two variables, we pre-multiply and post-
multiply bV by powers of the Kronecker products of sets of LCi and 1Ci chosen especially
to yield the linear combinations of the probabilities. The standard errors are then
estimated following the same approach as in the previous section. For instance in the
previous example:

bV = " dpA111 �dpB111 dpA112 �dpB112 dpA113 �dpB113 dpA211 �dpB211 dpA212 �dpB212 dpA213 �dpB213dpA121 �dpB121 dpA122 �dpB122 dpA123 �dpB123 dpA221 �dpB221 dpA222 �dpB222 dpA223 �dpB223
#

Since the number of rows in the example is determined solely by x2 and it is equal
to C2 = 2, while the number of columns is determined by x2 and x3, being equal to
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C1C3 = 6, b�z is computed as:

b�z = [LC2 ]
Z bV [LC1 
 LC3 ]

0Z (39)

The standard errors are found by taking the square root of the diagonal of the covari-
ance matrix var

�b�Z
�
:

var
�b�Z

�
= [LC1 
 LC3 ]

Z 
 [LC2 ]
Z

�
nA + nB

nAnB
b
� [LC1 
 LC3 ]

0Z 

�
L0C2

�Z
(40)

Crawford (2005) warns that extension to D dimensions demands considering two prob-
lems: one of interpretability and one of data requirements. Regarding interpretability, as
the number of dimensions increase, so does the number of cross-partial derivatives, which
calls for di¢ cult interpretations of their signs. However this problem is ameliorated when
dominance analysis focuses on welfare functions to which more structure has been imposed.
Usually this means, conciously or not, attributing signs to cross-partial derivatives or just
making them equal to zero. Such attributions often are re�ected in separability properties
of the functions. As for data requirements, the problem is that sample size requirements to
maintain precision in the nonparametric estimation of multivariate distributions increase ex-
ponentially as the number of dimensions increase. In the non-parametric statistics literature
this a manifestation of Bellman�s "curse of dimensionality" (e.g. see Silverman, 1986). For
instance if there are n = 1000 observations distributed uniformly over a 5D hypercube, [0; 1]5

the expected number of observations in the neighborhood of one of its 0:25 is n 0:25 = 0:32,
i.e. less than one observation. To get 50 data points upon which to base an estimate of a
cell frequency one needs to average over a 0:555 cube. Hence as the number of dimensions
rises either increasing sample size or taking larger neighbourhoods become necessary.

5. Empirical application

I test for stochastic dominance with three dimensions using data from Peru. As with
the bivariate case (and any other), several dominance conditions can be derived. We test
one of the �rst-order dominance conditions for three dimensions:

 2 	FO3D� $
�
�W � 0$ �Fi (xi) � 08i = 1; 2; 3 ^�Fij (xi; xj) � 08i; j = 1; 2; 3

^�F123 (x1; x2; x3) � 0 8x1; x2; x3

�
(41)
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	FO3D� ==
�
 :  i;� 08i = 1; 2; 3;  ij � 08i; j = 1; 2; 3;  123 � 0

	
Condition (41) stems from setting D = 3 in equation (36):

�W = �
3X
i=1

Z ai

0

 i�Fidxi+

2X
i=1

3X
j=i+1

Z aj

0

Z ai

0

 ij�Fijdxidxj�
Z a1

0

Z a2

0

Z a3

0

 123�Fdx3dx2dx1

(42)

Notice that �F123 (x1; x2; x3) � 0 8x1; x2; x3 implies �Fij (xi; xj) � 08i; j = 1; 2; 3 and
�Fi (xi) � 08i = 1; 2; 3. Therefore a test on �F123 (x1; x2; x3) su¢ ces to ascertain stochastic
dominance over the class of welfare functions considered.

5.1. Data

The wellbeing of Peruvian adults at least 25 years old living in Lima is compared against
that of adults living elsewhere in the country. I use the Peruvian National Household Survey,
ENAHO 2001, covering 16,515 households.For illustrative purposes, the comparison is over
the following three discretely measured dimensions:

� School attendance by type of school: Calonico and Nopo (2007) document a positive
earnings return to having attendend private school in Peru. This variable takes three
values: 0 if the person did not attend school, 1 if the person went to public school and
2 if the person went to private school.

� Crime victimization: It is a binary variable. The question in the survey is whether the
respondent or any other household member was the victime of the crime during the
past year. The assumption behind using this variable is that being a victime of crime,
and/or being a relative of a crime victim, has a negative impact on an individual�s
welfare. The value of 1 is attributed to those whose households and/or selves did not
undergo crime victimization.

� Serious accident or illness: Also a binary variable. The question is whether the respon-
dent or any other household member experienced a serious accident or illness during the
past year. The assumption is that having su¤ered a serious accident or illness and/or
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having a relative su¤ering from such events a¤ects individual welfare negatively. The
value of 1 is attributed to those whose households and/or selves did not su¤er a serious
accident or illness.

The respective sample sizes are in tables A-1a through A-2c. Denoting school attendance
by T , crime victimization by C and serious accident or illness by S, we constructed the
following matrix of positions:

0S0C0T 0S0C1T 0S0C2T 1S0C0T 1S0C1T 1S0C2T

0S1C0T 0S1C1T 0S1C2T 1S1C0T 1S1C1T 1S1C2T

The respective joint distributions are:

Peruvian adults in Lima
0.001 .0203 0.005 0.004 0.135 0.045
0.002 .0590 0.015 0.025 0.554 0.133

Peruvian adults outside Lima
0.002 0.012 0.001 0.013 0.093 0.008
0.010 0.050 0.004 0.113 0.658 0.036

The joint distribution tables should be read using the matrix of positions. For instance
it is interesting to note that both in Lima and elsewhere in Peru the percentage of adults
who reported crime victimization and serious illness is highest among those who attended
public school vis-a-vis those who attended private school and those who did not go to school.
In the case of Lima it is 2% versus 0.5% (private school) and 0.1% (those who did not go to
school) and in the case of the rest of the country it is 1.2% versus 0.1% (private school) and
0.2% (no school). (See three top-left cells of the respective tables).

5.2. Results

Since I am testing for �rst-order stochastic dominance using �F123 (x1; x2; x3), the re-
spective matrix yields seven contrasts for testing because �F123 (a1; a2; a3) = 0. The matrix
of di¤erences is constructed so that the joint distribution of Peruvians living outside Lima is
subtracted from that of Peruvians living in Lima. The seven z-statistics located according
to the matrix of positions are in Table 1:
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Table 1: Z-statistics of the 3-D �rst-order stochastic dominance test for class 	FO3D�. Ho:
�F123 (x1; x2; x3) = 08x1; x2; x3:Peruvian adults living in Lima minus those living elsewhere

in the country14

-1.271073 3.9410663 13.986603 -3.8936571 9.0505295 15.979511
2.4095175 2.2402767 12.671916 -18.167451 -23.950389 N/A

For a two-tailed test with 10 contrasts and in�nite degrees of freedom (as is the case
with a z-statistic when using t-statistics tables) the value of the 0.01 upper point of the
studentized maximum modulus (SMM) distribution is 3.289 (Stoline and Ury, 1979). Since
there are 11 contrasts one should use a higher value, e.g. 3.3. For the alternative hypothesis
of indeterminacy, i.e. crossing of the joint distribution hypersurfaces at least one of the
statistics has to be higher than 3.3 and another one lower than -3.3 (with about 98% of
con�dence). In this empirical application that is the case since one statistic is equal to less
than -23 and another one is almost 16. Therefore I conclude that the hypersurfaces cross and
there is no dominance relationship between adults living in Lima and adults living elsewhere
in Peru with respect to the three variables in question, in terms of class 	FO3D�. I also
show other dominance tests with pairs of these variables as well as with the variables taken
individually one at a time in order to explore (not exhaustively) whether other dominace
orderings are possible when the range of variables is restricted. Such exercise can also shed
light on the source of curve-crossing demonstrated by the 3-D test.

Tables 2, 3 and 4 show the z-statistics for the tests on �F12 (x1; x2) to ascertain �rst-
order stochastic dominance over the class 	�, which assumes substitutability across dimen-
sions. The tests are performed for the three possible combination pairs of the three variables
used. The respective critical values for 98% of con�dence from the SMM distribution for
three contrasts (since again �F12 (a1; a2) = 0) are -2.934 and 2.934. For �ve contrasts (which
is the case of combinations of the schooling variable with any of the others), the values are
slightly below -3.143 and 3.143 (these are the values for 6 contrasts available in Stolien and
Ury, 1979). The evidence is in favour of rejecting homogeneity for the alternative hypothesis
of curve-crossing for school attendance and crime victimization (Table 2), i.e. no dominance
ordering for the two samples is possible for welfare measures belonging to class 	�. A similar

14The z-statistics are ordered and displayed according to the matrix of positions. For instance the statistic
equal to 2.4095175 stems from the di¤erence between the two samples in the cumulative probabilities of
not having experienced a serious accident (S = 0) and not having attended school (T = 0) and not having
experienced crime victimization or having experienced crime victimization (C � 1).
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result in favour of the alternative of indeterminacy, i.e. curve-crossing, holds for the com-
bination of school attendance and serious illness/accident (Table 3). By contrast, the null
hypothesis of homogeneity is rejected in favour of the alternative hypothesis of �rst-order
stochastic dominance of the sample of adults living outside Lima over those living in Lima for
the combination of serious illness/accident and crime victimization (Table 4). Such ordering
holds for all welfare functions belonging to class 	�.

Table 2: Z-statistics of the 2-D �rst-order stochatic dominance tests for class 	�. Ho:
�F12 (x1; x2) = 08x1; x2. School attendance and crime victimization15

-5.708766982 8.27440639 15.97951227
-22.06532709 -39.15119123 N/A

Table 3: Z-statistics of the 2-D �rst-order stochatic dominance tests for class 	�. Ho:
�F12 (x1; x2) = 08x1; x2. Private school attendance and serious illness/accident

-5.539818323 2.240277135 6.001220773
-22.06532709 -39.15119123 N/A

Table 4: Z-statistics of the2-D �rst-order stochatic dominance tests for class 	�. Ho:
�F12 (x1; x2) = 08x1; x2. Serious illness/accident and crime victimization

6.021721854 15.97951227
6.001220773 N/A

Finally, univariate �rst-order dominance tests are performed for each variable. With
critical values for 98% of con�dence for two contrasts (around -2.9 and 2.9; see Stoline and
Ury, 1979) and the critical values for one contrast and 95% of con�dence (-1.96 and 1.96)
Peruvians living in Lima dominate those living outside Lima regarding school attendance but
are dominated by the latter regarding both crime victimization and serious illness/accident
(Table 5). These results illustrate the point made by other authors (e.g. Duclos et al.,
2006) whereby studying dominance over individual dimensions may lead to di¤erent ordering
possibilities from those attainable by studying multivariate dominance. But also these results
help to explain the three-dimensional curve-crossing of this empirical application: there is
at least one dimension in which each sample dominates the other one.

15This table is read using the same reasoning as with Table 1, but know the category of serious ill-
ness/accident has been integrated out. For instance, the value of -39.15119123 is that of the statistic
corresponding to the di¤erence between samples of the cumulative probability of not having been victimized
or having been victimized (C � 1) and not having attended school or having attended public school (T � 1).
The remaining tables are read accordingly.
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Table 5: Z-statistics of the 1-D �rst-order stochatic dominance tests for class �1(see Table
2). Ho: �Fi (xi) = 08i = 1; 2; 3.

Private school Crime victimization Serious illness/accident
-22.06532709 15.97951227 6.001220773
-39.15119123 N/A N/A

6. Conclusions and further research

This paper�s �rst objective has been to motivate the need to �nd tests of multidimen-
sional stochastic dominance to a broad range of conditions based on extensions of the condi-
tions compiled and expanded by Atkinson and Bourguignon (1982) and Crawford (2005). In
this paper I compiled these conditions up to third order of dominance and to D dimensions
(for �rst-order dominance) and then proceeded to show that many more conditions, beyond
those originally derived by Atkinson and Bourguignon (1982), can be obtained, for instance
by increasing the order of dominance over one dimension at a time. This approach was
originally pioneered by Duclos et al. (2006), but in this paper I showed that the conditions
of Duclos et al. (2006) can be replicated and then conditions representing complementarity
between attributes can be incorporated, which were missing in Duclos et al. (2006). These
conditions are meant for welfare functions but with some adjustments (e.g. reversing the
sign of the derivatives, incorporating poverty lines) they are applicable to poverty functions
as well. With this argument of completeness this paper motivates the need to �nd tests for
multidimensional stochastic dominance, at least for the "missing conditions", i.e. those not
covered by Duclos et al. (2006).

The second part of the paper proposes an encompassing test based on a multivariate
extension of Anderson�s (1996) non-parametric test. This test is only applied to discrete,
ordinal variables since it would not be consistent for continuous variables. I show how the
test works and how to implement it for D dimensions using an original approach of a matrix
of positions, which indicates how to stack in an orderly manner probabilities from several
dimensions in a matrix. The test was applied to �rst-order dominance over three dimensions
using data from Peru. The empirical example illustrates the well-established point that
the choice of number of dimensions may generate alternative dominance orderings. It also
illustrates that by looking at dominance over fewer dimensions one can explain failure to
reach partial orderings when more dimensions are considered. In the Peruvian case the fact
that one sample dominated in terms of school attendance but the other sample dominated
over crime victimization and serious illness/accident helped to explain why dominance over
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the three variables jointly was rejected.

Pending research should focus on �nding new tests for continuous variables and for
combinations of continuous and discrete variables. Duclos et al. (2007) are pioneering this
approach with an extension of their test (Duclos et al., 2006) to combinations of discrete
and continuous variables. They have so far the only available multidimensional tests for
continuous variables and combinations of continuous and discrete variables, but they have
not been shown yet to apply to the "missing conditions". It could be applied if a gap
representation can be shown for objects like �K (x1; x2) and its linear combinations. Should
that be the case both the test by Duclos et al. (2006) and that of Barret and Donald (2003) or
even Bennett (2008) would be applicable. Alternatively a kernel estimation approach may be
necessary. The extension of tests like that of Linton et al. (2008) to multiple dimensions looks
like a promising route to complete this part of the multidimensional stochastic dominance
testing literature.
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Table 6: Bivariate dominance criteria, null and alternative hypotheses

Null Alternative Class 	
First order dominance
Ho : �Fi (:) ;�F (:) = 0 H1F : �Fi (:) ;�F (:) � 0 	�

Ho : �Fi (:) ;�K (:) = 0 H1K : �Fi (:) ;�K (:) � 0 	+

Ho : �Fi (:) ;�F (:) ;�K (:) = 0 H1 : H1F ^ H1K 	1

2nd order dominance
Ho : �Hi (:) ;�H (:) = 0 H2H : �Hi (:) ;�H (:) � 0 	��

Ho : �Hi (:) ;�L (:) = 0 H2L : �Hi (:) ;�L (:) � 0 	++

Ho : �Hi (:) ;�H (:) ;�L (:) = 0 H2 : H2H ^ H2L 	2

3nd order dominance
Ho : �Ji (:) ;�J (:) = 0 H3J : �Ji (:) ;�J (:) � 0 	���

Ho : �Ji (:) ;�M (:) = 0 H3J : �Ji (:) ;�M (:) � 0 	+++

Ho : �Ji (:) ;�J (:) ;�M (:) = 0 H3 : H3J ^ H3M 	3

Example of condition (18)

Ho : �F2 (:) ;�H1 (:) ;

Z x1

0

�F (t; x2) dt = 0 Ha : �F2 (:) ;�H1 (:) ;

Z x1

0

�F (t; x2) dt � 0 	�1

Table 7: Univariate dominance criteria, null and alternative hypotheses

Null Alternative Class �
First order dominance
Ho : �Fi (:) = 0 H1 : �Fi (:) � 0 �1

2nd order dominance
Ho : �Hi (:) = 0 H2 : �Hi (:) � 0 �2

3nd order dominance
Ho : �Ji (:) = 0 H3 : �Ji (:) � 0 �3

�1 = f :  i � 0g ; �2 = f :  i � 0;  ii � 0g ; �3 = f :  i � 0;  ii � 0;  iii � 0g
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7. Appendix 1:

Derivation of condition (18):

 2 	�1 $
�
�W � 0$ �F2 (x2) � 0 ^�H1 (x1) � 0 ^

Z x1

0

�F (t; x2) dt � 0 8x1; x2
�

where 	�1 = f :  2 	� ^  11 � 0 ^  112 � 0g

We start by integrating by parts (8), �rst with respect to x2 and then the two elements
each with respect to x1 which yields the condition from which the �rst-order dominance
result (9) is deduced:

�W = �
Z a1

0

 1 (x1; a2)�F1 (x1) dx1 �
Z a1

0

 2 (a1; x2)�F2 (x2) dx2 (43)

+

Z a2

0

Z a1

0

 12 (x1; x2)�F (x1; x2) dx1dx2

De�ne: I � �
R a1
0
 1 (x1; a2)�F1 (x1) dx1, II � �

R a1
0
 2 (a1; x2)�F2 (x2) dx2, III �R a2

0

R a1
0
 12 (x1; x2)�F (x1; x2) dx1dx2. Integrating I by parts with respect to x1 yields:

I = � 1 (a1; a2)�H1 (a1) +

Z a1

0

 11 (x1; a2)�H1 (x1) dx1 (44)

Integrating also III by parts with respect to x1 yields:

III =

Z a2

0

 12 (a1; x2)

�Z a1

0

�F (t; x2) dt

�
dx2�

Z a2

0

Z a1

0

 112 (a1; x2)

�Z x1

0

�F (t; x2) dt

�
dx1dx2

(45)

Plugging results (44) and (45) into (43) yields the condition:
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�W = � 1 (a1; a2)�H1 (a1) +

Z a1

0

 11 (x1; a2)�H1 (x1) dx1 (46)

�
Z a1

0

 2 (a1; x2)�F2 (x2) dx2

+

Z a2

0

 12 (a1; x2)

�Z a1

0

�F (t; x2) dt

�
dx2

�
Z a2

0

Z a1

0

 112 (a1; x2)

�Z x1

0

�F (t; x2) dt

�
dx1dx2

Condition (18) ensues from the result in (46).
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8. Appendix 2:

Table A-1a: Incidence of serious accident/illness and crime victimization

Peruvian adults who did not attend school and live in Lima

Crime victim No crime victim Total
Serious accident/illness 5 14 19
No serious accidente/illness 24 140 164

Total 29 154 183

Table A-1b: Incidence of serious accident/illness and crime victimization

Peruvian adults who attended public school and live in Lima

Crime victim No crime victim Total
Serious accident/illness 114 332 446
No serious accidente/illness 762 3,120 3,882

Total 876 3,452 4,328

Table A-1c: Incidence of serious accident/illness and crime victimization

Peruvian adults who attended private school and live in Lima

Crime victim No crime victim Total
Serious accident/illness 29 84 113
No serious accidente/illness 255 749 1,004

Total 284 833 1,117

Table A-2a: Incidence of serious accident/illness and crime victimization

Peruvian adults who did not attend school and do not live in Lima

Crime victim No crime victim Total
Serious accident/illness 44 271 315
No serious accidente/illness 357 3,092 3,449

Total 401 3,363 3,764

Table A-2b: Incidence of serious accident/illness and crime victimization

Peruvian adults who attended public school and do not live in Lima
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Crime victim No crime victim Total
Serious accident/illness 342 1,372 1,714
No serious accidente/illness 2,561 18,063 20,624

Total 2,903 19,435 22,338

Table A-2c: Incidence of serious accident/illness and crime victimization

Peruvian adults who attended private school and do not live in Lima

Crime victim No crime victim Total
Serious accident/illness 24 101 125
No serious accidente/illness 220 985 1,205

Total 244 1,086 1,330
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