The case for multidimensional approach to poverty measurement

46th Session of the United Nations Statistics Commission

Pali Lehohla Statistician-General South Africa 2nd February 2015

Outline

Human activities in space

Intersection of natural capital economy and society

Human Settlements and geographical dimension of multidimensionality

Education and socio-economic determinants of performance including spatial configuration

Framing Poverty Measurement in South Africa

Human activities in space

data = template of evidence

Indicators for Sustainable Development

- Requires measuring 'bottom-up' within the place/ neighbourhood/ community/ wards
- Requires strong institutions (local municipalities, districts, cities & provinces)

Geography as a dimension: Human Settlements policy

The 2011 settlement patterns illustrate that policy intentions and public action are at variance with densification on the margins

Spatio-Cultural and Temporal Dimensions of Measurement

Education and socio-economic determinants of performance including spatial configuration

Bomfenbrenner (1979): defined four contributing groups to school performance

- Macro Level Education Department, OBE, CAPS
- Meso Level School funding, Teachers qualification,
- Micro Level Individual Students, attendance, homework
- Exo Level Socio- Economic Factors in the Community/ School feeder areas

Levels of Poverty

Level of Employment

Access to Basic Services

Household goods

A useful definition of Socio economic status (SES) is:

"Relative position of a family or individual on a hierarchal social structure based on their access to, or control over wealth, prestige and power"

Willms 2004.

Regression Model

Pass =58.92 +0.13 Employment +0.12 Telephone +0.09 Computer

Variable	Estimate	t-statistic	p-value	VIF
Intercept	58.92	20.48	<0.0001 ***	
Computer	0.09	2.07	0.041 ***	4.96
Employed	0.13	2.31	0.020 ***	1.82
Telephone	0.12	2.88	0.004 ***	4.89

	Α	В
Count	15251	15251
Average	100.00	100.00
Standard Deviation	20.00	20.00
Median	100.35	100.92
10 Percentile	73.89	73.95
90 Percentile	125.61	124.72

Figure 1.1 Data Set A Histogram

Figure 1.2 Data Set B Histogram

Spatio-Cultural and Temporal Dimensions of Measurement

	Α	В
Count	15251	15251
Average	100.00	100.00
Standard Deviation	20.00	20.00
Median	100.35	100.92
10 Percentile	73.89	73.95
90 Percentile	125.61	124.72

Figure 1.1 Data Set A Histogram

Figure 1.2 Data Set B Histogram

Texture

Spatio-Cultural and Temporal Dimensions of Measurement

	Α	В
Count	15251	15251
Average	100.00	100.00
Standard Deviation	20.00	20.00
Median	100.35	100.92
10 Percentile	73.89	73.95
90 Percentile	125.61	124.72

Figure 1.1 Data Set A Histogram

Figure 1.2 Data Set B Histogram

Texture creates Simpson/aggregation Paradox

Spatio-Cultural and Temporal Dimensions of Measurement

Spatio-Cultural and Temporal Dimensions of Measurement

Use of Statistics to frame Inequality in South Africa

Why Multidimensional Poverty Indices (MPI) approach is good for South Africa

Measuring poverty

Mapping the poverty headcount by municipality - 2001-2011

Poverty headcount by municipality – 2001-2011 (SAMPI)

Poverty headcount by municipality – 2001-2011 (SAMPI)

Poverty headcount by municipality – 2001-2011 (SAMPI)

Poverty can be spatially represented and thereby allowing better targeting

Poverty drivers in South Africa are multidimensional

