Counting and Multidimensional Poverty Measurement

by Sabina Alkire and James Foster

> *QEH 31 May 2007*

Why Multidimensional Poverty?

- Appealing conceptual framework
 - Capabilities
- Data availability
- Tools
 - Poverty measures
 - Poverty orderings
 - Extended from single dimensional approach

Problems

- Poverty of what
 - Which dimensions and variables
 - How to deal with ordinal variables
 - How to make variables commensurate
- Aggregation
 - Interpretation
 - Properties
- Identification
 - Extremes: Union or intersection
 - What's in between?

Outline

- Motivation and Review
- Identification method
- Adjusted headcount
 - Needs only ordinal variables
 - Useful axiomatic justification
- Family based on FGT
 - Intuitive extension
- Empirical application
- General method and extensions

Hypothetical Challenge

- A government would like to create an official multidimensional poverty indicator
- Desiderata
 - It must understandable and easy to describe
 - It must conform to "common sense" notions of poverty
 - It must fit the purpose for which it is being developed
 - It must be technically solid
 - It must be operationally viable
 - It must be easily replicable
- What would you advise?

Not Exactly Hypothetical

- Mexican Government
 - Must alter official poverty methods
 - Include six other dimensions
- Summer 2007
 - Draft of paper
- August 2007
 - Present proposed methodology
- Question: What to advise?

Multidimensional Poverty Strategy

Twin cutoffs

Poverty line for each domain

Bourguignon and Chakravarty, JEI, 2003

"a multidimensional approach to poverty defines poverty as a shortfall from a threshold on each dimension of an individual's well being."

Cutoff in terms of numbers of dimensions

Ex: UNICEF, Child Poverty Report, 2003

-Two or more deprivations

Ex: Mack and Lansley, Poor Britain, 1985

-Three or more out of 26

Focus on P_{α} family - general case later

Note No weighting

"we have no reliable basis for doing [otherwise]" Mayer and Jencks, 1989

- will relax later

Needs cardinal variable

- relaxed for P_0

Review: Some Income Poverty Measures

Single variable, e.g., consumption, income Sen (1976) two steps

Identification step "who is poor?" Typically use poverty line Absolute, meaning unchanging over time Cutoff is always somewhat arbitrary

Aggregation step "which overall indicator?" Headcount ratio P_0 = percentage poor Example: Incomes = (7,3,4,8) poverty line z = 5 Who's poor? $g^0 = (0,1,1,0)$ Headcount $P_0 = \mu(g^0) = 2/4$ Example: (7,3,3,8) No change!

Review: Some Income Poverty Measures

Per capita poverty gap P_1 Example: incomes = (7,3,4,8) poverty line z = 5 Normalized gaps = $g^1 = (0, 2/5, 1/5, 0)$ Poverty gap = $P_1 = \mu(g^1) = 3/20$ Example: (7,3,3,8) $P_1 = 4/20$ (sensitive to decrements) However: (7,2,4,8) P₁ = 4/20 (insensitive to inequality) FGT P₂ Example: incomes = (7,3,3,8) poverty line z = 5 Squared Normalized gaps = $g^2 = (0, 4/25, 4/25, 0)$ $FGT = P_2 = \mu(g^2) = 8/100$ Example: (7,2,4,8) Squared Normalized gaps = $g^2 = (0, 9/25, 1/25, 0)$ $P_1 = 10/100$ (sensitive to inequality)

Will use to construct multidimensinal poverty measures.

Matrix of well-being scores in D domains for N persons

		Per	sons		
	13.1	15.2	12.5	20.0	
	14	7	10	11	
y =	4	5	1	3	
	1	0	0	1	

Domains

Matrix of well-being scores in J domains for N persons

Personsz
$$y =$$
 $\begin{bmatrix}
 13.1 & 15.2 & 12.5 & 20.0 \\
 14 & 7 & 10 & 11 \\
 4 & 5 & 1 & 3 \\
 1 & 0 & 0 & 1
\end{bmatrix}$ 13Domains

Domain specific cutoffs

Matrix of well-being scores in D domains for N persons

Personsz
$$y =$$
 $\begin{bmatrix}
 13.1 & 15.2 & 12.5 & 20.0 \\
 14 & 7 & 10 & 11 \\
 4 & 5 & 1 & 3 \\
 1 & 0 & 0 & 1
 \end{bmatrix}
 12$ Domains

Domain specific cutoffs *These entries achieve target cutoffs*

Matrix of well-being scores in several domains for N persons

Personsz
$$y =$$
 $\begin{bmatrix}
 13.1 & 15.2 & 12.5 & 20.0 \\
 14 & 7 & 10 & 11 \\
 4 & 5 & 1 & 3 \\
 1 & 0 & 0 & 1
 \end{bmatrix}
 12$ Domains

Domain specific cutoffs *These entries achieve target cutoffs* These entries do not

Normalized Gaps

Personsz
$$y =$$
 $\begin{bmatrix}
 13.1 & 15.2 & 12.5 & 20.0 \\
 14 & 7 & 10 & 11 \\
 4 & 5 & 1 & 3 \\
 1 & 0 & 0 & 1
 \end{bmatrix}
 12$ Domains

Replace these entries with 0 Replace these with normalized gap $(z_j - y_{ji})/z_j$

Normalized Gaps

Personsz
$$g^1 = \begin{bmatrix} 0 & 0 & 0.04 & 0 & 13 \\ 0 & 0.42 & 0.17 & 0.08 & 12 \\ 0 & 0 & 0.67 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
Domains

Replace these entries with 0 Replace these with normalized gap $(z_j - y_{ji})/z_j$

Normalized Gaps

Persons $g^{1} = \begin{vmatrix} 0 & 0 & 0.04 & 0 \\ 0 & 0.42 & 0.17 & 0.08 \\ 0 & 0 & 0.67 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ Domains

Replace these entries with 0 Replace these with normalized gap $(z_i - y_{ii})/z_i$

Deprivation Counts

Persons
$$g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Domains

Replace these entries with 0 Replace these entries with 1

Deprivation Counts

Persons $g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Counts

c = (0, 2, 4, 1)= number of deprivations

Identification

Q/Who is poor?

Persons
$$g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Domains

Counts

c = (0, 2, 4, 1)= number of deprivations

Identification: Union

Q/Who is poor? A/ Poor if deprived in at least one dimension $(c_i \ge 1)$

Persons

$$g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 Domains

Counts

c = (0, 2, 4, 1)= number of deprivations

Identification: Union

Q/Who is poor? A/ Poor if deprived in at least one dimension $(c_i \ge 1)$

Persons

	0	0	1	0	
~0	0	1	1	1	Domaina
g =	0	0	1	0	Domanis
	0	1	1	0_	

Counts

c = (0, 2, 4, 1) = number of deprivations

Difficulties

Single deprivation may be due to something other than poverty (UNICEF) Union approach often predicts *very* high numbers - political constraints.

Identification

Q/Who is poor?

Persons
$$g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Domains

$$c = (0, 2, 4, 1)$$

Identification: Intersection

Q/Who is poor? A/ Poor if deprived in all dimensions $(c_i \ge 4)$

Persons

$$g^{0} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Domains

$$c = (0, 2, 4, 1)$$

Identification: Intersection

Q/Who is poor? A/Poor if deprived in all dimensions $(c_i \ge 4)$ Persons

$$g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 Domains

$$c = (0, 2, 4, 1)$$

Difficulty: Demanding requirement (especially if J large) Often identifies a very narrow slice of population

Identification

Q/Who is poor?

Persons
$$g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Domains

$$c = (0, 2, 4, 1)$$

Q/Who is poor? A/ Fix cutoff k, identify as poor if $c_i \ge k$

Persons

$$g^{0} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Domains

$$c = (0, 2, 4, 1)$$

Q/Who is poor? A/ Fix cutoff k, identify as poor if $c_i \ge k$

Persons

$$g^{0} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Domains

$$c = (0, 2, 4, 1)$$

Example: 2 out of 4

Q/Who is poor? A/ Fix cutoff k, identify as poor if $c_i \ge k$

Persons

$$g^{0} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Domains

$$c = (0, 2, 4, 1)$$

Example: 2 out of 4 Note: Especially useful when number of dimensions is large Union becomes too large, intersection too small

Implementation method: Censor nonpoor data

Persons $g^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

$$c = (0, 2, 4, 1)$$

Implementation method: Censor nonpoor data

Persons $g^{0}(k) = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$

Domains

c(k) = (0, 2, 4, 0)

Implementation method: Censor nonpoor data

Persons $g^{0}(k) = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$

Domains

c(k) = (0, 2, 4, 0)

Similarly for y(k), g¹(k), etc

Implementation method: Censor nonpoor data

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

c(k) = (0, 2, 4, 0)

Similarly for y(k), $g^1(k)$, etc Note: Includes both union and intersection

Implementation method: Censor nonpoor data

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

c(k) = (0, 2, 4, 0)

Similarly for y(k), g¹(k), etc Note: Includes both union and intersection Next: Turn to aggregation

Headcount Ratio

Persons $g^{0}(k) = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$

c(k) = (0, 2, 4, 0)

Domains

Dimension cutoff
$$k = 2$$

Headcount ratio $H = 1/2$

Suppose the number of deprivations rises for person 2

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

$$c(k) = (0, 2, 4, 0)$$

Dimension cutoffk = 2Headcount ratioH = 1/2

Suppose the number of deprivations rises for person 2

Persons						
	0	1	1	0		
$\sim^{0}(1_{r})$	0	1	1	0		
g(K) =	0	0	1	0		
	0	1	1	0_		

Domains

$$c(k) = (0, 3, 4, 0)$$

Dimension cutoffk = 2Headcount ratioH = 1

k = 2H = 1/2 No change! Violates dim. monotonicity
Return to original matrix

Persons $g^{0}(k) = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$

Domains

c(k) = (0, 2, 4, 0)

Need to augment information of H

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

c(k) = (0, 2, 4, 0)

Need to augment information of H

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

c(k) = (0, 2, 4, 0)shares of deprivations (0, 1/2, 1, 0)

Need to augment information of H

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Adjusted headcount ratio = $D_0 = HA$

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Adjusted headcount ratio = $D_0 = HA = \mu(g^0(k))$

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Adjusted headcount ratio = $D_0 = HA = \mu(g^0(k)) = 6/16 = .375$

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Adjusted headcount ratio = $D_0 = HA = \mu(g^0(k)) = 6/16 = .375$

Obviously if person 2 has an additional deprivation, D_0 rises

Persons

$$g^{0}(k) = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Domains

Adjusted headcount ratio = $D_0 = HA = \mu(g^0(\tau)) = 6/16 = .375$ Obviously if person 2 has an additional deprivation, D_0 rises Dim. Mon. Persons

$$g^{0}(k) = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Domains

Observations

Uses ordinal data

Transform variable and poverty line: D_0 unchanged D_0 is "meaningful" in the sense of Roberts, *Measurement Theory*, 1979 Works with: Self reported health, years of schooling and income

Similar to traditional gap $P_1 = HI$

HI = per capita poverty gap = total income gap of poor/total population HA = per capita deprivation = total deprivations of poor/total population

Observations

For k = 1 (union approach) $D_0 = (\sum_j j H_j)/J$ Also used by Brandolini and D'Alessio (1998) Link with Human Poverty Index $D_0 = \mu(g^0(k)) \le HPI \le \mu_3(g^0(k))$ But similar values!

Satisfies several typical properties of multidimensional poverty

Symmetry, Replication invariance, Weak monotonicity, Scale invariance

Normalization, Decomposability,

And the new one: Dimension monotonicity

Axiomatic Treatment

Note $D_0 = \sum_i p(v_i)/N$ where v_i is i's deprivation vector, and i's individual deprivation

function is $p(v_i) = 0$ for $|v_i| < k$ and $p(v_i) = k$ for $|v_i| \ge k$

- Q/ Why this functional form for p?
- A/ Suppose f satisfies
 - 1) Weak monotonicity: $f(v') \ge f(v)$ if $v' = v + e_m$

Individual deprivation does not fall if increase dimensions of deprivation

2) **Semi-consistency**: $f(v) \ge f(v')$ implies $f(w) \ge f(w')$

whenever v - w = v' - w' = e_m

Ordering preserved if remove same deprivation from both vectors.

3) Simple anonymity: f(v) = f(v') for all v, v' with exactly J-1 deprivations All deprivation vectors with one achievement ranked equally.

Th: If f satisfies (1) - (3), then f is some increasing function of p. Prf: Analogous to Pattanaik and Xu (1990)

Adjusted headcount = $D_0 = HA = \mu(g^0(k))$

Persons
$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Domains

Assume cardinal variables

Adjusted headcount = $D_0 = HA = \mu(g^0(k))$

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Assume cardinal variables

Q/ What happens when a poor person who is deprived in dimension j becomes even more deprived?

Adjusted headcount = $D_0 = HA = \mu(g^0(k))$

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Assume cardinal variables

Q/ What happens when a poor person who is deprived in dimension j becomes even more deprived?

A/Nothing. D_0 is unchanged. Violates monotonicity.

Need to augment the information of D_0

Persons $g^{0}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Domains

Return to normalized gaps

		Perso	ons	
	0	0	0.04	0
1(1)	0	0.42	0.17	0
$g(\mathbf{K}) =$	0	0	0.67	0
	0	1	1	0

Domains

Return to normalized gaps

Persons

$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0.04 & 0 \\ 0 & 0.42 & 0.17 & 0 \\ 0 & 0 & 0.67 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
Domains

Average **gap** across all deprived dimensions of the poor: G(k) = (0.04+0.42+0.17+0.67+1+1)/6

Adjusted Poverty Gap = $D_1 = D_0G = HAG$

Persons
$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0.04 & 0 \\ 0 & 0.42 & 0.17 & 0 \\ 0 & 0 & 0.67 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Domains

Average **gap** across all deprived dimensions of the poor: G(k) = (0.04+0.42+0.17+0.67+1+1)/6

Adjusted Poverty Gap = $D_1 = D_0G = HAG = \mu(g^1(k))$

Average **gap** across all deprived dimensions of the poor: G(k) = (0.04+0.42+0.17+0.67+1+1)/6

Adjusted Poverty Gap = $D_1 = D_0G = HAG = \mu(g^1(k))$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then D_1 will rise.

Adjusted Poverty Gap = $D_1 = D_0G = HAG = \mu(g^1(k))$

Persons
$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0.04 & 0 \\ 0 & 0.42 & 0.17 & 0 \\ 0 & 0 & 0.67 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
Domains

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then D_1 will rise.

Satisfies monotonicity

Adjusted Poverty Gap = $D_1 = D_0G = HAG = \mu(g^1(k))$

An increase in deprivation has the same impact no matter the size of the initial deprivation

Consider the matrix of alpha powers of normalized shortfalls

Persons						
1.4	0	0	0.04	0		
	0	0.42	0.17	0		
g (K)=	0	0	0.67	0		
	0	1	1	0_		

Domains

Consider the matrix of alpha powers of normalized shortfalls

Adjusted FGT is $D_{\alpha} = \mu(\mathbf{g}^{\alpha}(\tau))$ for $\alpha \ge 0$

$$g^{\alpha}(k) = \begin{bmatrix} 0^{\alpha} & 0^{\alpha} & 0.04^{\alpha} & 0^{\alpha} \\ 0^{\alpha} & 0.42^{\alpha} & 0.17^{\alpha} & 0^{\alpha} \\ 0^{\alpha} & 0^{\alpha} & 0.67^{\alpha} & 0^{\alpha} \\ 0^{\alpha} & 1^{\alpha} & 1^{\alpha} & 0^{\alpha} \end{bmatrix}$$

Domains

Adjusted FGT is $D_{\alpha} = \mu(\mathbf{g}^{\alpha}(\tau))$ for $\alpha \ge 0$

$$g^{\alpha}(k) = \begin{bmatrix} 0^{\alpha} & 0^{\alpha} & 0.04^{\alpha} & 0^{\alpha} \\ 0^{\alpha} & 0.42^{\alpha} & 0.17^{\alpha} & 0^{\alpha} \\ 0^{\alpha} & 0^{\alpha} & 0.67^{\alpha} & 0^{\alpha} \\ 0^{\alpha} & 1^{\alpha} & 1^{\alpha} & 0^{\alpha} \end{bmatrix}$$
Domains

Satisfies numerous properties including decomposability, and dimension monotonicity, monotonicity (for $\alpha > 0$), transfer (for $\alpha > 1$).

Illustration: USA

- Data Source: National Health Interview Survey, 2004, United States Department of Health and Human Services. National Center for Health Statistics ICPSR 4349.
- Tables Generated By: Suman Seth.
- Unit of Analysis: Individual.
- Number of Observations: 46009.
- Variables Used:

Income - Ratio of family income to poverty threshold *Education* – Highest level of school completed *Health* – Reported health status

• Poverty Threshold:

Income Poor: 12.1% if *Income < 1* (below threshold), **Education Poor: 18.6%** if *Education < GED/High School* **Education Poor: 12.8%** if *Health = Fair or Poor*

• Headcount Ratio

% of individuals poor	% of households poor	% of households poor
in 1 or more	in 2 or more	in 3 or more
dimensions	dimensions	dimensions
(Union Approach)	(Intermediate App.)	(Intersection App.)
31.55%	10.07%	1.86%

Example

• D₀

• D₁

• D₂

• HPI Equivalent

Of those who are	Of those who are	Of those who are
poor 1 or more	poor 2 or more	poor 3 or more
dimensions	dimensions	dimensions
0.1449	0.0733	0.0186

Poverty Gap of						
Those who are	Those who are	Those who are				
poor one or more	poor two or more	poor three or more				
dimensions	dimensions	dimensions				
0.0561	0.0292	0.0076				

Squared Poverty Gap of						
Those who are	Those who are	Those who are				
poor one or more	poor three or more					
dimensions	dimensions	dimensions				
0.0287	0.0152	0.0041				

Of those who are	Of those who are	Of those who are
poor 1 or more	poor 2 or more	poor 3 or more
dimensions	dimensions	dimensions
0.1507	0.0743	0.0186

Example

Head Counts

Number of deprivations	USA	Hispanic	Non- Hispanic
0	69	44	75
1	21	34	18
2	8	18	6
3	2	4	1
Total	100	100	100

Crude Head Count Measure Decomposition

		Poor in one	Poor in two	Poor in three
Ethnicity	Freq.	or more	or more	or more
		dimensions	dimensions	dimensions
Hispanic	9140	.560 (35%)	.217 (43%)	.038 (40%)
Non-Hispanic	36869	.255 (65%)	.072 (57%)	.014 (60%)
Overall Poverty Rate	46009	.316 (100%)	.101 (100%)	.019 (100%)

D₀ Measure Decomposition

		Poor in one	Poor in two	Poor in three
Ethnicity	Freq.	or more	or more	or more
		dimensions	dimensions	dimensions
Hispanic	9140	.272 (37%)	.157 (43%)	.038 (40%)
Non-Hispanic	36869	.114 (63%)	.052 (57%)	.014 (60%)
Overall Poverty Rate	46009	.145 (100)	.073 (100)	.019 (100)

D₁ Measure Decomposition

		Poor in one	Poor in two	Poor in three
Ethnicity	Freq.	or more	or more	or more
		dimensions	dimensions	dimensions
Hispanic	9140	.113 (40%)	.067 (45%)	.017 (46%)
Non-Hispanic	36869	.042 (60%)	.020 (55%)	.005 (54%)
Overall Poverty Rate	46009	.056 (100%)	.029 (100%)	.008 (100%)

D₂ Measure Decomposition

		Poor in one	Poor in two	Poor in three
Ethnicity	Freq.	or more	or more	or more
		dimensions	dimensions	dimensions
Hispanic	9140	.061 (42%)	.037 (48%)	.010 (52%)
Non-Hispanic	36869	.021 (58%)	.010 (52%)	.003 (48%)
Overall Poverty Rate	46009	.029 (100%)	.015 (100%)	.004 (100%)

Extension

General application of identification strategy
Derive censored matrix y*(k)
Replace all nonpoor entries with poverty cutoffs
Apply any multidimensional measure
P(y*(k);z)
Straightforward transformation of existing technology
Preserves key axioms, slightly redefined

Extension

Modifying for weights Weighted identification Weight on income: 50% Weight on education, health: 25% Cutoff = 0.50Poor if income poor, or suffer two or more deprivations Cutoff = 0.60Poor if income poor and suffer one or more other deprivations Nolan, Brian and Christopher T. Whelan, Resources, Deprivation and Poverty, 1996

Weighted aggregation

Review Challenge

- Desiderata
 - It must understandable and easy to describe
 - It must conform to "common sense" notions of poverty
 - It must fit the purpose for which it is being developed
 - It must be technically solid
 - It must be operationally viable
 - It must be easily replicable
- Thanks for your attention