Multidimensional Poverty Measurement without the Strong Focus Axiom

Florent Bresson¹

LÉO, Université d'Orléans

Oxford, 16th June 2010

¹florent.bresson@univ-orleans.fr.

Florent Bresson

Multidimensional Poverty Measurement without the Strong Focus Axiom

LÉO, Université d'Orléans

Introduction		
0 1 1		

Florent Bresson

LÉO, Université d'Orléans

Introduction		
Context		

Multidimensional measures of poverty:

Florent Bresson

LÉO, Université d'Orléans

Introduction		
Context		

Multidimensional measures of poverty:

for the estimation of multidimensional poverty,

Florent Bresson

LÉO, Université d'Orléans

Introduction		
Contoxt		

Multidimensional measures of poverty:

- for the estimation of multidimensional poverty,
- for the estimation of intertemporal poverty,

Introduction		
Contout		

Multidimensional measures of poverty:

- for the estimation of multidimensional poverty,
- for the estimation of intertemporal poverty,
- for the estimation of income poverty when income sources are not perfect substitutes.

Introduction		
Contout		

Multidimensional measures of poverty:

- for the estimation of multidimensional poverty,
- for the estimation of intertemporal poverty,
- for the estimation of income poverty when income sources are not perfect substitutes.

Introduction		
Orighteest		

Multidimensional measures of poverty:

- for the estimation of multidimensional poverty,
- for the estimation of intertemporal poverty,
- for the estimation of income poverty when income sources are not perfect substitutes.

An axiomatic approach of poverty measurement:

Introduction		

Multidimensional measures of poverty:

- for the estimation of multidimensional poverty,
- for the estimation of intertemporal poverty,
- for the estimation of income poverty when income sources are not perfect substitutes.

An axiomatic approach of poverty measurement:

 to highlight the link between ethical and mathematical properties,

Multidimensional Poverty Measurement without the Strong Focus Axiom

Introduction		

Multidimensional measures of poverty:

- for the estimation of multidimensional poverty,
- for the estimation of intertemporal poverty,
- for the estimation of income poverty when income sources are not perfect substitutes.

An axiomatic approach of poverty measurement:

- to highlight the link between ethical and mathematical properties,
- to avoid policy bias.

Introduction		

Florent Bresson

LÉO, Université d'Orléans

Introduction		

With the traditional axiomatic framework (Chakravarty, Mukherjee & Ranade, 1998; Tsui, 2002; Bourguignon & Chakravarty, 2003), the way of dealing with deprivations in each dimension may be in some cases much too rigid regarding both:

Multidimensional Poverty Measurement without the Strong Focus Axiom

Introduction		

With the traditional axiomatic framework (Chakravarty, Mukherjee & Ranade, 1998; Tsui, 2002; Bourguignon & Chakravarty, 2003), the way of dealing with deprivations in each dimension may be in some cases much too rigid regarding both:

the identification step,

Multidimensional Poverty Measurement without the Strong Focus Axiom

Introduction		

With the traditional axiomatic framework (Chakravarty, Mukherjee & Ranade, 1998; Tsui, 2002; Bourguignon & Chakravarty, 2003), the way of dealing with deprivations in each dimension may be in some cases much too rigid regarding both:

- the identification step,
- the aggregation step.

Florent Bresson

Introduction		

Outline I

- The identification of the poor
- The axiomatic framework
- Multidimensional poverty measurement
- Concluding remarks

Identification		

First part The identification of the poor

Florent Bresson

LÉO, Université d'Orléans

The traditional approaches

The traditional approaches and their extension

Florent Bresson

LÉO, Université d'Orléans

Two traditional approaches of poverty identification in the literature:

Two traditional approaches of poverty identification in the literature:

The "intersection" approach: an individual is poor if he is deprived with respect to all relevant attributes,

Two traditional approaches of poverty identification in the literature:

The "intersection" approach: an individual is poor if he is deprived with respect to all relevant attributes,

The "union" approach: an individual is poor if he is deprived with respect to at least one relevant attribute.

Two traditional approaches of poverty identification in the literature:

The "intersection" approach: an individual is poor if he is deprived with respect to all relevant attributes,

The "union" approach: an individual is poor if he is deprived with respect to at least one relevant attribute.

- Two traditional approaches of poverty identification in the literature:
- The "intersection" approach: an individual is poor if he is deprived with respect to all relevant attributes,
- The "union" approach: an individual is poor if he is deprived with respect to at least one relevant attribute.
- Alkire & Foster's (2007) "intermediate" identification approach: an individual is deemed poor if he is deprived with respect to a certain number of attributes (weights allowed).

Figure 1: Different approaches of poverty identification.

Figure 1: Different approaches of poverty identification.

The "well-being" approach

Florent Bresson

LÉO, Université d'Orléans

Let x_i : { x_1 ,..., x_m } be the *m*-vector of person *i* attributes level used for the assessment of poverty.

Let x_i : { x_1 ,..., x_m } be the *m*-vector of person *i* attributes level used for the assessment of poverty. The "well-being" approach (Duclos, Sahn & Younger, 2006): an individual is poor if its level of well-being is less than the one corresponding to the vector of poverty lines $z := \{z_1, ..., z_m\}$,

Let x_i : { x_1 ,..., x_m } be the *m*-vector of person *i* attributes level used for the assessment of poverty. The "well-being" approach (Duclos, Sahn & Younger, 2006): an individual is poor if its level of well-being is less than the one corresponding to the vector of poverty lines $z := \{z_1,...,z_m\}$, that is:

$$\varphi^{W}(\boldsymbol{x}_{i}, \boldsymbol{z}, \boldsymbol{\lambda}) := \begin{cases} 1 & \text{if } \boldsymbol{\lambda}(\boldsymbol{x}_{i}) < \boldsymbol{\lambda}(\boldsymbol{z}), \\ 0 & \text{otherwise,} \end{cases}$$

with λ being a well-being function such that $\frac{\partial \lambda}{\partial x_{ij}} \ge 0$ $\forall j \in \{1, ..., m\}.$

Florent Bresson

LÉO, Université d'Orléans

Multidimensional Poverty Measurement without the Strong Focus Axiom

	Axiomatic framework	

Second part

An axiomatic framework for multidimensional poverty measurement

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
The focus axiom		

The focus axiom with unidimensional settings

Florent Bresson

LÉO, Université d'Orléans

The focus axiom with unidimensional settings

Focus axiom: any improvement for a non-poor does not change the level of poverty, other things being equal.

LÉO, Université d'Orléans

	Axiomatic framework	
	0000000	
The focus axiom		

The focus axiom with multidimensional settings (I)

Two rival versions:

Florent Bresson

LÉO, Université d'Orléans
	Axiomatic framework	
The focus axiom		

Two rival versions:

Weak focus (FOC_W): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if *i* is non-poor.

	Axiomatic framework	
The focus axiom		

Two rival versions:

Weak focus (FOC_W): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if *i* is non-poor.

Strong focus (FOC_S): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if $x_{ij} \ge z_j$.

Multidimensional Poverty Measurement without the Strong Focus Axiom

	Axiomatic framework	
The focus axiom		

Two rival versions:

Weak focus (FOC_W): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if *i* is non-poor.

Strong focus (FOC_S): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if $x_{ij} \ge z_j$.

Multidimensional Poverty Measurement without the Strong Focus Axiom

	Axiomatic framework	
The focus axiom		

Two rival versions:

Weak focus (FOC_W): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if *i* is non-poor.

Strong focus (FOC_S): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if $x_{ij} \ge z_j$.

 FOC_W and FOC_S are equivalent with the "intersection" approach.

Two rival versions:

Weak focus (FOC_W): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if *i* is non-poor.

Strong focus (FOC_S): increasing the level x_{ij} of the *j*th attribute for the *i*th person does not change poverty if $x_{ij} \ge z_j$.

 FOC_W and FOC_S are equivalent with the "intersection" approach. FOC_S is not consistent with all poverty domains that may be used with the "well-being" approach of poverty identification since FOC_S entails the use of identification functions based on the number of deprivations.

Florent Bresson

	Axiomatic framework	
The focus axiom		

Florent Bresson

LÉO, Université d'Orléans

Two reasons for advocating a slackening of **FOC**_S:

Florent Bresson

LÉO, Université d'Orléans

Two reasons for advocating a slackening of **FOC**_S:

the "substitution" approach: "surpluses" in some dimensions can compensate deprivations in other dimensions in terms of well-being,

Two reasons for advocating a slackening of **FOC**_S:

the "substitution" approach: "surpluses" in some dimensions can compensate deprivations in other dimensions in terms of well-being,

the "variable needs" approach: some poverty lines are determinated by deprivation levels observed with respect to other attributes.

Figure 2: The substitution space.

Figure 2: The substitution space.

Figure 2: The substitution space.

	Axiomatic framework	
The focus axiom		

Florent Bresson

LÉO, Université d'Orléans

An intermediate axiom between FOC_W and FOC_S :

Florent Bresson

LÉO, Université d'Orléans

An intermediate axiom between FOC_W and FOC_S :

Extended strong focus (FOC_E): increasing the level x_{ij} of the *j*th attribute of person *i* does not change poverty if $x_{ij} \ge z_j + \delta(\mathbf{x}_{i,-j})$.

with δ_j such that $\delta_j(\mathbf{x}_{i,-j}) \leq 0$, $\forall \mathbf{x}_{i,-j} \geq \mathbf{z}_{-j}$, and $\delta_j(\mathbf{x}_{i,-j}) = 0$, $\forall \mathbf{x}_{i,-j} = \mathbf{z}_{-j}$

	Axiomatic framework	
Other axioms		

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Two strong versions to complement the focus axiom:

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Two strong versions to complement the focus axiom:

Monotonicity (MON): any increase in the level of all attributes of a poor person reduces poverty.

	Axiomatic framework	
Other axioms		

Two strong versions to complement the focus axiom:

Monotonicity (MON): any increase in the level of all attributes of a poor person reduces poverty.

Restricted strong monotonicity (MON_R) : any increase for a poor person of the level of an attribute inside its substitution space reduces poverty.

	Axiomatic framework	
Other axioms		

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
	00000000	
Other axioms		

Required properties:

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Required properties:

 Non-decreasingness with respect to the poverty domain (NDZ)

Required properties:

- Non-decreasingness with respect to the poverty domain (NDZ)
- Restricted continuity (CON)

Required properties:

- Non-decreasingness with respect to the poverty domain (NDZ)
- Restricted continuity (CON)
- Anonymity (ANO)

Florent Bresson

Required properties:

- Non-decreasingness with respect to the poverty domain (NDZ)
- Restricted continuity (CON)
- Anonymity (ANO)
- Population invariance (POP)

Required properties:

- Non-decreasingness with respect to the poverty domain (NDZ)
- Restricted continuity (CON)
- Anonymity (ANO)
- Population invariance (POP)
- Sub-group consistency (suc)

Florent Bresson

Required properties:

- Non-decreasingness with respect to the poverty domain (NDZ)
- Restricted continuity (CON)
- Anonymity (ANO)
- Population invariance (POP)
- Sub-group consistency (suc)
- Unit consistency (UNC)

Florent Bresson

	Identification	Axiomatic framework	Measures	
Other axioms				

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Additional axioms:

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Additional axioms:

Normalization (NOR)

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Additional axioms:

- Normalization (NOR)
- Continuity (CON_S)

Florent Bresson

LÉO, Université d'Orléans

Additional axioms:

- Normalization (NOR)
- Continuity (CON_S)
- Scale invariance (SCI)

Additional axioms:

- Normalization (NOR)
- Continuity (CON_S)
- Scale invariance (sci)
- Subgroup additivity (SUD)

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Transfer axioms

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Transfer axioms

Two different types of transfers:

Florent Bresson

LÉO, Université d'Orléans

	Axiomatic framework	
Other axioms		

Transfer axioms

Two different types of transfers:

Transfers that do not change the marginal distributions of the attributes:

Transfers that change the marginal distributions of the attributes:

Multidimensional Poverty Measurement without the Strong Focus Axiom
	Axiomatic framework	
Other axioms		

Transfer axioms

Two different types of transfers:

- Transfers that do not change the marginal distributions of the attributes:
 - Non-decreasingness under correlation increasing switches (NDS)
 - Non-increasingness under correlation increasing switches (NCS)
 - Attribute additivity (ATD)
- Transfers that change the marginal distributions of the attributes:

	Axiomatic framework	
Other axioms		

Transfer axioms

Two different types of transfers:

- Transfers that do not change the marginal distributions of the attributes:
 - Non-decreasingness under correlation increasing switches (NDS)
 - Non-increasingness under correlation increasing switches (NCS)
 - Attribute additivity (ATD)
- Transfers that change the marginal distributions of the attributes:
 - Simple transfer (TRA),
 - Non ambiguous transfer (TRN),
 - Transfer in the sense of Schur (TRS),
 - Independent transfer (TRI).

Florent Bresson

	Measures	

Third part Multidimensional poverty measurements without FOC_s

General expression for Θ_m (I)

Florent Bresson

LÉO, Université d'Orléans

		Measures ●ooooooooooo	
General expression			

A poverty measure Θ_m complying with FOC_E , MON, MON_R, CON, NDZ, SUC, ANO and POP is of the form (Tsui, 2002):

$$\Theta_m(\boldsymbol{X}, \boldsymbol{z}) = \xi \left(\frac{1}{n} \sum_{i \in \boldsymbol{P}} \theta(\boldsymbol{x}_i, \boldsymbol{z}), \boldsymbol{z} \right)$$

with:

Florent Bresson

LÉO, Université d'Orléans

		Measures ●ooooooooooo	
General expression			

A poverty measure Θ_m complying with FOC_E , MON, MON_R, CON, NDZ, SUC, ANO and POP is of the form (Tsui, 2002):

$$\Theta_m(\boldsymbol{X}, \boldsymbol{z}) = \xi \left(\frac{1}{n} \sum_{i \in \boldsymbol{P}} \theta(\boldsymbol{x}_i, \boldsymbol{z}), \boldsymbol{z} \right)$$

with:

- ξ being a continuous and increasing function,
- **P** being the set of the poor defined by some identification function $\varphi(x_i, z)$,
- θ being a continuous function on \mathscr{P} and $\mathbb{R}^{m}_{++} \setminus \mathscr{P}$, such that $\frac{\partial \theta}{\partial x_{ij}} < 0 \ \forall x_{ij} < z_j + \delta(x_{i,-j}, z), \ x_i \in \mathscr{P}, \ \partial \theta / \partial x_{ij} = 0$ otherwise, and $\frac{\partial \theta}{\partial z_j} \ge 0$.

Florent Bresson

LÉO, Université d'Orléans

Axiomatic framework

Measures

Conclusion

General expression

General expression of Θ_m (II)

Florent Bresson

LÉO, Université d'Orléans

 Θ_m complies with:

Florent Bresson

LÉO, Université d'Orléans

		Measures o●ooooooooooooo	
General expression			

 Θ_m complies with:

FOC_{*S*}: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.

Florent Bresson

LÉO, Université d'Orléans

		Measures o●ooooooooooooo	
General expression			

- Θ_m complies with:
- **FOC***S*: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.

		Measures o●ooooooooooooo	
General expression			

 Θ_m complies with:

- **FOC**_S: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.

CON*S*: if and only if θ is continuous on \mathbb{R}^m_{++} .

		Measures o●ooooooooooooo	
General expression			

- **FOC***s*: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.
- **CON***s*: if and only if θ is continuous on \mathbb{R}^{m}_{++} .
 - **SCI**: if and only if ξ and θ are homogeneous of degree 0.

		Measures o●ooooooooooooo	
General expression			

- **FOC***s*: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.
- **CON***S*: if and only if θ is continuous on \mathbb{R}^{m}_{++} .
 - **SCI**: if and only if ξ and θ are homogeneous of degree 0.
 - **SUD**: if and only if ξ is linear.

		Measures	
General expression			

- **FOC***s*: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.
- **CON***S*: if and only if θ is continuous on \mathbb{R}^{m}_{++} .
 - **SCI**: if and only if ξ and θ are homogeneous of degree 0.
 - **SUD**: if and only if ξ is linear.
 - **NDS**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \ge 0$.

Multidimensional Poverty Measurement without the Strong Focus Axiom

		Measures ooooooooooooooo	
General expression			

- **FOC***s*: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.
- **CON***S*: if and only if θ is continuous on \mathbb{R}^{m}_{++} .
 - **SCI**: if and only if ξ and θ are homogeneous of degree 0.
 - **SUD**: if and only if ξ is linear.
 - **NDS**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \ge 0$.
 - **NCS**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \le 0$.

Multidimensional Poverty Measurement without the Strong Focus Axiom

		Measures	
General expression			

 Θ_m complies with:

- **FOC***s*: if and only if $\theta(x_i, z) = \theta(x_i \land z, z)$.
- **NOR:** if and only if $\xi(\theta(\mathbf{0}, \mathbf{z})) = 0$.
- **CON***S*: if and only if θ is continuous on \mathbb{R}^{m}_{++} .

SCI: if and only if ξ and θ are homogeneous of degree 0.

- **SUD**: if and only if ξ is linear.
- **NDS**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \ge 0$.
- **NCS**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \le 0$.
- ATD: if and only if $\theta(\mathbf{x}_i, \mathbf{z}) = m^{-1} \sum w_j \theta(x_{ij}, z_j)$ with $\sum_{j=1}^m w_j = m$.

Florent Bresson

Multidimensional Poverty Measurement without the Strong Focus Axiom

Expression générale de Θ_m (III)

Florent Bresson

LÉO, Université d'Orléans

Expression générale de Θ_m (III)

 Θ_m complies with:

Florent Bresson

LÉO, Université d'Orléans

Expression générale de Θ_m (III)

 Θ_m complies with: TRA: if and only if $\partial^2 \theta / \partial x_{ij}^2 \ge 0$.

Florent Bresson

LÉO, Université d'Orléans

Expression générale de Θ_m (III)

 Θ_m complies with: **TRA**: if and only if $\partial^2 \theta / \partial x_{ij}^2 \ge 0$. **TRN**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \ge 0$.

Florent Bresson

LÉO, Université d'Orléans

Expression générale de Θ_m (III)

- **TRA**: if and only if $\partial^2 \theta / \partial x_{ij}^2 \ge 0$.
- **TRN**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \ge 0$.
- **TRS**: if and only if θ is convex.

Expression générale de Θ_m (III)

- Θ_m complies with:
- **TRA**: if and only if $\partial^2 \theta / \partial x_{ij}^2 \ge 0$.
- **TRN**: if and only if $\partial^2 \theta / (\partial x_{ij} \partial x_{ij'}) \ge 0$.
- **TRS**: if and only if θ is convex.
- **TRI**: if and only if $\partial^2 \theta / \partial x_{ij}^2 \ge 0$ and Θ_m satisfies ATD.

Multidimensional Poverty Measurement without the Strong Focus Axiom

Axiomatic framework

Measures

Conclusion

Illustrations

Bourguignon & Chakravarty (2003)

Florent Bresson

LÉO, Université d'Orléans

		Measures	Conclusion
Illustrations			

Bourguignon & Chakravarty (2003)

Bourguignon & Chakravarty's (2003) poverty measure is a generalization of Foster, Greer & Thorbecke (1984) based on a CES production function, that is:

$$\Theta_m^{BC}(\boldsymbol{X}, \boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m w_j \left(1 - \frac{x_{ij} \wedge z_j}{z_j} \right)^{\beta} \right)^{\frac{\alpha}{\beta}},$$

with $\alpha \ge 1$ and $\beta \ge 1$.

LÉO, Université d'Orléans

Multidimensional Poverty Measurement without the Strong Focus Axiom

		Measures	
Illustrations			

Bourguignon & Chakravarty (2003)

Bourguignon & Chakravarty's (2003) poverty measure is a generalization of Foster, Greer & Thorbecke (1984) based on a CES production function, that is:

$$\Theta_m^{BC}(\boldsymbol{X}, \boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m w_j \left(1 - \frac{x_{ij} \wedge z_j}{z_j} \right)^{\beta} \right)^{\frac{\alpha}{\beta}},$$

with $\alpha \ge 1$ and $\beta \ge 1$. β stands for the degree of substituability between the different attributes and α for the aversion to extreme poverty.

Multidimensional Poverty Measurement without the Strong Focus Axiom

		Measures	
Illustrations			

Bourguignon & Chakravarty (2003)

Bourguignon & Chakravarty's (2003) poverty measure is a generalization of Foster, Greer & Thorbecke (1984) based on a CES production function, that is:

$$\Theta_m^{BC}(\boldsymbol{X}, \boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m w_j \left(1 - \frac{x_{ij} \wedge z_j}{z_j} \right)^{\beta} \right)^{\frac{\alpha}{\beta}},$$

with $\alpha \ge 1$ and $\beta \ge 1$. β stands for the degree of substituability between the different attributes and α for the aversion to extreme poverty. The measure complies with FOC_S, MON, MON_R, CON_S, NDZ, SUD, ANO, POP, SCI, NOR, TRA and TRS, and suits a "union" approach of poverty identification.

Florent Bresson

Note: $w_1 = w_2 = 0.5$, $\beta = 1.5$ and $\alpha = 2$.

Figure 3: The individual poverty function in Bourguignon & Chakravarty (2003).

Axiomatic framework

Measures

Conclusion

Illustrations

Bourguignon & Chakravarty (2003) and other approaches of poverty identification

Florent Bresson

LÉO, Université d'Orléans

Bourguignon & Chakravarty (2003) and other approaches of poverty identification

Generalization of Bourguignon & Chakravarty (2003) with other approaches of poverty identification:

$$\Theta_{m\varphi}^{BC}(\boldsymbol{X},\boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^{n} \varphi^{W}(\boldsymbol{x}_{i},\boldsymbol{z},\boldsymbol{\lambda}) \left(\sum_{j=1}^{m} w_{j} \left(1 - \frac{x_{ij} \wedge z_{j}}{z_{j}} \right)^{\beta} \right)^{\frac{\alpha}{\beta}}$$

Florent Bresson

LÉO, Université d'Orléans

Note: $w_1 = w_2 = 0.5$, $\beta = 1.5$ and $\alpha = 2$.

Figure 4: The individual poverty function in Bourguignon & Chakravarty (2003) with the "intersection" approach.

Note: $w_1 = w_2 = 0.5$, $\beta = 1.5$, $\alpha = 2$ and $\varphi(\mathbf{x}, \mathbf{z})$ based on $\lambda(\mathbf{x}_i) = \left(x_{i1}^{1/4} + x_{i2}^{1/4}\right)^4$.

Figure 5: The individual poverty function in Bourguignon & Chakravarty (2003) with the "well-being" approach.

		Measures	Conclusion
Illustrationa			

Bourguignon & Chakravarty (2003) with the "variable needs" approach

Florent Bresson

LÉO, Université d'Orléans

		Measures ○○○○○○○●○○○○○	
Illustrations			

Bourguignon & Chakravarty (2003) with the "variable needs" approach

Generalization of Bourguignon & Chakravarty (2003) so as to suit the "variable needs" approach:

$$\Theta_m^{\boldsymbol{\delta}}(\boldsymbol{X}, \boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m w_j \max\left\{ 0, \left(1 - \frac{x_{ij}}{z_j \left(1 + \delta_j(\boldsymbol{x}_{i,-j}) \right)} \right) \right\}^{\beta} \right)^{\frac{\mu}{\beta}},$$

with $\delta_j(\mathbf{z}_{-j}) = 0$, $\partial \delta_j(\mathbf{x}_{i,-j})/\partial x_k \leq 0$ for $x_{ik} < z_k$ and $\partial \delta_j(\mathbf{x}_{i,-j})/\partial x_k = 0$ for $x_{ik} \geq z_k$, $k \neq j$.

Florent Bresson

LÉO, Université d'Orléans
		Measures	
Illustrations			

Bourguignon & Chakravarty (2003) with the "variable needs" approach

Generalization of Bourguignon & Chakravarty (2003) so as to suit the "variable needs" approach:

$$\Theta_m^{\boldsymbol{\delta}}(\boldsymbol{X}, \boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m w_j \max\left\{ 0, \left(1 - \frac{x_{ij}}{z_j \left(1 + \delta_j(\boldsymbol{x}_{i,-j}) \right)} \right) \right\}^{\beta} \right)^{\frac{\mu}{\beta}},$$

with $\delta_j(z_{-j}) = 0$, $\partial \delta_j(x_{i,-j})/\partial x_k \le 0$ for $x_{ik} < z_k$ and $\partial \delta_j(x_{i,-j})/\partial x_k = 0$ for $x_{ik} \ge z_k$, $k \ne j$. The measure complies with FOC_{*E*}, MON, MON_{*R*}, CON_{*S*}, NDZ, SUC, ANO, POP, NOR, SUD and SCI.

Florent Bresson

LÉO, Université d'Orléans

Multidimensional Poverty Measurement without the Strong Focus Axiom

Figure 6: The individual poverty function in Bourguignon & Chakravarty (2003) with the "variable needs" approach.

Axiomatic framework

Measures

Conclusion

Illustrations

Bourguignon & Chakravarty (2003) with the "substitution" approach

Florent Bresson

LÉO, Université d'Orléans

		Measures ○○○○○○○○○○○	
Illustrations			

Bourguignon & Chakravarty (2003) with the "substitution" approach

Generalization of Bourguignon & Chakravarty (2003) so as to suit the "substitution" approach:

$$\Theta_m^{\boldsymbol{\delta'}}(\boldsymbol{X},\boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \max\left\{0, \sum_{j=1}^m w_j \left(\max\left\{0, 1+\delta'_j(\boldsymbol{x}_{i,-j})-\frac{x_{ij}}{z_j}\right\}^\beta - \delta'_j(\boldsymbol{x}_{i,-j})^\beta\right)\right\}^{\frac{\mu}{\beta}}.$$

with
$$\delta'_j(\mathbf{z}_{-j}) = 0$$
, $\partial \delta'_j(\mathbf{x}_{i,-j})/\partial x_k \leq 0$ for $x_{ik} < z_k$ and $\partial \delta'_j(\mathbf{x}_{i,-j})/\partial x_k = 0$ for $x_{ik} \geq z_k$, $k \neq j$.

Florent Bresson

LÉO, Université d'Orléans

		Measures	Conclusion
Illustrations			

Bourguignon & Chakravarty (2003) with the "substitution" approach

Generalization of Bourguignon & Chakravarty (2003) so as to suit the "substitution" approach:

$$\Theta_m^{\boldsymbol{\delta'}}(\boldsymbol{X}, \boldsymbol{z}) := \frac{1}{n} \sum_{i=1}^n \max\left\{0, \sum_{j=1}^m w_j \left(\max\left\{0, 1 + \delta'_j(\boldsymbol{x}_{i,-j}) - \frac{x_{ij}}{z_j}\right\}^{\beta} - \delta'_j(\boldsymbol{x}_{i,-j})^{\beta} \right) \right\}^{\frac{\mu}{\beta}}.$$

with $\delta'_j(\mathbf{z}_{-j}) = 0$, $\partial \delta'_j(\mathbf{x}_{i,-j})/\partial x_k \leq 0$ for $x_{ik} < z_k$ and $\partial \delta'_j(\mathbf{x}_{i,-j})/\partial x_k = 0$ for $x_{ik} \geq z_k$, $k \neq j$. For constant values for δ'_j , the measure complies with FOC_E, MON, MON_R, CON_S, NDZ, SUC, ANO, POP, NOR, SUD, SCI, TRA and TRS.

Florent Bresson

LÉO, Université d'Orléans

Multidimensional Poverty Measurement without the Strong Focus Axiom

Note: $w_1 = w_2 = 0.5$, $\beta = 1.5$, $\alpha = 2$ and $\delta'_1 = \delta'_2 = 0.5$.

Figure 7: Bourguignon & Chakravarty's (2003) individual poverty function with the "substitution" approach.

Note: $w_1 = w_2 = 0.5$, $\beta = 1$, $\alpha = 2$ and $\delta'_1 = \delta'_2 = 1$.

Figure 8: Bourguignon & Chakravarty's (2003) individual poverty function with the "substitution" approach.

Note: $w_1 = w_2 = 0.5$, $\beta = 1.5$, $\alpha = 2$ and $\delta'_j(\mathbf{x}_{i,-j}) = 1 - \sum_{k \neq j} w_k \frac{z_k - x_{ik} \wedge z_k}{z_k}$.

Figure 9: Bourguignon & Chakravarty's (2003) individual poverty function with the "substitution" approach.

Concluding remarks

Florent Bresson

LÉO, Université d'Orléans

Concluding remarks

 Identification and aggregation issues cannot be separated with multidimensional poverty in the same manner as with unidimensional poverty,

Concluding remarks

- Identification and aggregation issues cannot be separated with multidimensional poverty in the same manner as with unidimensional poverty,
- The definition of the poverty domain becomes more complicated when slackening the strong focus axiom since substitution effects between the different dimensions have to be taken into account.

		Conclusion

The end

Thanks for your attention.

Florent Bresson

LÉO, Université d'Orléans