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Problem 1:  How identify the poor? 

 

• Given a poverty bundle z = (z1, z2,…), a threshold for each attribute, 
how do we determine who is poor and who is not? 
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• Ideally, leave the choice to the practitioner   
(see also Duclos, Sahn & Younger, 2006 ;  Alkire & Foster, 2008) 
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Problem 2:  How give priority to the worse off poor? 

• Consider a multidimensional Foster-Greer-Thorbecke index: 
α

Σ Π −( ) ji
i j j jz x    (the sum over the poor only) 

where xi
j is individual i’s amount of attribute j 

 

• Example with poverty bundle z = (10, 10) and weights α1 = α2 = 1 

− Individual 1 has bundle (4, 6) ;  individual 2 has bundle (6.5, 4) 

− According to the index individual 1 is worse off than 2 
 

• Assume an extra 0.5 of the first attribute can be given away 

− Worse off individual 1 gets it    poverty decreases by 2 

− Better off individual 2 gets it    poverty decreases by 3 

− Undesirable conclusion:  give priority to the better off! 
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Problem 3:  How deal with ordinal data? 

 

• Ordinal:  e.g., health, housing, education,… 

− Example:  “Would you say your health in general is  
0 = poor,  1 = fair,  2 = good,  3 = very good,  4 = excellent?” 

 

• Problem in defining priority 

− Cardinal:  “Should $30 go to someone with $100 or to 
someone with $200?”    meaningful question 

− Ordinal:  “Should 1 point of health go to someone with health 
2 or to someone with health 3?”    not a meaningful question 

 

• See also Alkire & Foster (2008) and Bossert, Chakravarty & 
D’Ambrosio (2009) 
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Notation 

 

• Set of attributes C ∪ O  (remember problem 3) 

− Each individual has an attribute bundle x = (xC , xO) in B  

▪ xC the vector of cardinal attributes (positive real numbers) 

▪  xO the vector of ordinal attributes (integers, 0, 1, 2, 3,…) 
 

• Fixed poverty bundle z in B  
 

• A distribution X = (x 1, x 2,…) is an element of D 
 

• Poverty ranking < (“better than” relation) on D 



Axiom 1:  Additive representability (AR) 

 

AR:  There exists a continuous function π : B → R such that,  
for all X and Y in D, 

X < Y       if and only if       
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• AR is a strong axiom:  < has to be  (i) continuous,  (ii) anonymous,  
(iii) separable,  (iv) replication invariant 

 

• AR is strong, but quite common in the literature   
(see, e.g., Foster & Shorrocks, 1991 ;  Tsui, 2002 ;  Bourguignon & 
Chakravarty, 2003) 
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Axiom 2:  Focus (F) 

 

• Remember problem 1 (how to identify the poor) 

 

• We define the set of poor in X as P = { i | x
 i ≺ z } 

− Given AR, the poor are those with π(x) > π(z) 

 

F:  for all X in D, if Y is obtained from X by a change in the bundle of 
a non-poor while keeping her non-poor, then X ~ Y 
 

• Given F, the function π is constant for all x such that π(x) ≤ π(z) 

 



 8

Axiom 3:  Monotonicity (M) 

 

M:  for all X and Y in D and for all poor i, we have that if x 
i > y 

i  

and x 
j = y 

j for all j ≠ i, then X  Y 

 

• Given AR and M, the function π is strictly decreasing in each 
attribute for bundles x such that π(x) > π(z) 
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Axiom 4:  Priority (P = CP & OP) 
 

• Remember problem 2 (how to give priority to the worse off poor) 

CP:  for all X in D, 

− for all δ = (δC , δO) in B with δC > 0 and δO = 0 

− for all poor i and j with x i  x j 

we have   ( … , x i, … , x j + δ, … )      ( … , x i + δ, … , x j, … ) 
 

OP:  for all X in D, 

− for all δ = (δC , δO) with δC = 0 and δO > 0 

− for all poor i and j with x i  x j and x i
k = x j

k for all k for  

which δO,k > 0 

we have   ( … , x i, … , x j + δ, … )      ( … , x i + δ, … , x j, … ) 
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Result 

 

A poverty ranking < satisfies AR, F, M and P iff there exist 

− weights wk > 0 for each cardinal attribute k in C, 

− strictly increasing functions vk : N → R, with vk(0) = 0, for each 
ordinal attribute k in O, 

− a continuous function  f : R+ → R, 

▪ with  f (r) = f (ζ)  for each  r  ≥  ζ  =  ∈Σk C wk zk + ∈Σk Ovk( zk ), 

▪ that is strictly convex and strictly decreasing on [0, ζ], 

such that, for all X and Y in D, we have  X < Y  iff 
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Special case:  All attributes cardinal 

 

X < Y          iff          
=
Σ

1

1 X

X

n

in
 f ( 

∈
Σ

k C
wk x 

i
k

 )    ≤    
=
Σ

1

1 Y

Y

n

in
 f ( 

∈
Σ

k C
wk y 

i
k

 ) 
 

 

• Satisfies: 

− Weak uniform majorization principle:  if X ≠ Y and X = YQ with 
Q a non-permutation bistochastic matrix, then X < Y 

− Correlation increasing majorization principle 

Example with z = (10, 10):   ( (5, 6), (9, 2) )    ( (9, 6), (5, 2) ) 
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A weaker form of priority (work in progress) 

 

• Cardinal priority (CP) is a demanding normative principle 

− It asks us to disregard “efficiency costs” caused by diminishing 
returns to well-being 

 

• Example: 

− Suppose x i  x j, but individual i has only 10 units of attribute 1, 

while individual j has 100 units 

− According to CP, if an extra unit of attribute 1 can be given 
away, then it should go to individual j 

 



A weaker form of priority (work in progress) 
 

• Consider a weaker version of CP: 

For all X in D, 

− for all δ = (δC , δO) in B with δC > 0 and δO = 0 

− for all poor i and j with x i  x j and x i
k ≥ x j

k for all k for  

which δC,k > 0 

we have   ( … , x i, … , x j + δ, … )      ( … , x i + δ, … , x j, … ) 

 

• Characterizes poverty measures looking like   
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with vk as before and “appropriate conditions” on f and gk 
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Conclusion 

 

• Characterization of a class of poverty measures featuring: 

− Priority to the worse off poor 

− Both cardinal and ordinal attributes 

− Flexibility in the choice of identification criterion 

 

• Work in progress: 

− Investigate weaker forms of priority 

− Derive practical conditions to check unanimity judgments 

− An application of the latter using EU-SILC data 

 


