Poverty comparisons with cardinal and ordinal attributes

Kristof Bosmans
Department of Economics, Maastricht University

Luc Lauwers

Center for Economic Studies, Katholieke Universiteit Leuven
Erwin Ooghe
Center for Economic Studies, Katholieke Universiteit Leuven

Problem 1: How identify the poor?

- Given a poverty bundle $z=\left(z_{1}, z_{2}, \ldots\right)$, a threshold for each attribute, how do we determine who is poor and who is not?
(i) Union

(ii) Intersection

(iii) Intermediate

- Ideally, leave the choice to the practitioner (see also Duclos, Sahn \& Younger, 2006 ; Alkire \& Foster, 2008)

Problem 2: How give priority to the worse off poor?

- Consider a multidimensional Foster-Greer-Thorbecke index:

$$
\Sigma_{i} \Pi_{j}\left(z_{j}-x_{j}^{i}\right)^{\alpha_{j}} \quad \text { (the sum over the poor only) }
$$

where x_{j}^{i} is individual i 's amount of attribute j

- Example with poverty bundle $z=(10,10)$ and weights $\alpha_{1}=\alpha_{2}=1$
- Individual 1 has bundle $(4,6)$; individual 2 has bundle $(6.5,4)$
- According to the index individual 1 is worse off than 2
- Assume an extra 0.5 of the first attribute can be given away
- Worse off individual 1 gets it \rightarrow poverty decreases by 2
- Better off individual 2 gets it \rightarrow poverty decreases by 3
- Undesirable conclusion: give priority to the better off!

Problem 3: How deal with ordinal data?

- Ordinal: e.g., health, housing, education,...
- Example: "Would you say your health in general is 0 = poor, 1 = fair, 2 = good, 3 = very good, 4 = excellent?"
- Problem in defining priority
- Cardinal: "Should \$30 go to someone with \$100 or to someone with \$200?" \rightarrow meaningful question
- Ordinal: "Should 1 point of health go to someone with health 2 or to someone with health 3 ?" \rightarrow not a meaningful question
- See also Alkire \& Foster (2008) and Bossert, Chakravarty \& D’Ambrosio (2009)

Notation

- Set of attributes $C \cup O$ (remember problem 3)
- Each individual has an attribute bundle $x=\left(x_{C}, x_{0}\right)$ in B
- x_{C} the vector of cardinal attributes (positive real numbers)
- x_{O} the vector of ordinal attributes (integers, $0,1,2,3, \ldots$)
- Fixed poverty bundle z in B
- A distribution $X=\left(x^{1}, x^{2}, \ldots\right)$ is an element of D
- Poverty ranking \succcurlyeq ("better than" relation) on D

Axiom 1: Additive representability (AR)

AR: There exists a continuous function $\pi: B \rightarrow \mathbb{R}$ such that, for all X and Y in D,

$$
X \succcurlyeq Y \quad \text { if and only if } \quad \frac{1}{n_{X}} \sum_{i=1}^{n_{X}} \pi\left(x^{i}\right) \leq \frac{1}{n_{Y}} \sum_{i=1}^{n_{Y}} \pi\left(y^{i}\right)
$$

- AR is a strong axiom: \succcurlyeq has to be (i) continuous, (ii) anonymous, (iii) separable, (iv) replication invariant
- AR is strong, but quite common in the literature (see, e.g., Foster \& Shorrocks, 1991 ; Tsui, 2002 ; Bourguignon \& Chakravarty, 2003)

Axiom 2: Focus (F)

- Remember problem 1 (how to identify the poor)
- We define the set of poor in X as $P=\left\{i \mid x^{i} \prec z\right\}$
- Given AR, the poor are those with $\pi(x)>\pi(z)$

F: for all X in D, if Y is obtained from X by a change in the bundle of a non-poor while keeping her non-poor, then $X \sim Y$

- Given \mathbf{F}, the function π is constant for all x such that $\pi(x) \leq \pi(z)$

Axiom 3: Monotonicity (M)

M: for all X and Y in D and for all poor i, we have that if $x^{i}>y^{i}$ and $x^{j}=y^{j}$ for all $j \neq i$, then $X \succ Y$

- Given $\mathbf{A R}$ and \mathbf{M}, the function π is strictly decreasing in each attribute for bundles x such that $\pi(x)>\pi(z)$

Axiom 4: Priority ($\mathrm{P}=\mathrm{CP}$ \& OP)

- Remember problem 2 (how to give priority to the worse off poor)

CP: for all X in D,

- for all $\delta=\left(\delta_{C}, \delta_{O}\right)$ in B with $\delta_{C}>0$ and $\delta_{O}=0$
- for all poor i and j with $x^{i} \succ x^{j}$
we have $\left(\ldots, x^{i}, \ldots, x^{j}+\delta, \ldots\right) \succ\left(\ldots, x^{i}+\delta, \ldots, x^{j}, \ldots\right)$

OP: for all X in D,

- for all $\delta=\left(\delta_{C}, \delta_{O}\right)$ with $\delta_{C}=0$ and $\delta_{O}>0$
- for all poor i and j with $x^{i} \succ x^{j}$ and $x^{i}{ }_{k}=x^{j}{ }_{k}$ for all k for which $\delta_{0, k}>0$
we have $\left(\ldots, x^{i}, \ldots, x^{j}+\delta, \ldots\right) \succ\left(\ldots, x^{i}+\delta, \ldots, x^{j}, \ldots\right)$

Axiom 4: Priority ($\mathrm{P}=\mathrm{CP}$ \& OP)

- Remember problem 2 (how to give priority to the worse off poor)

CP: for all X in D,

- for all $\delta=\left(\delta_{C}, \delta_{O}\right)$ in B with $\delta_{C}>0$ and $\delta_{O}=0$
- for all poor i and j with $x^{i} \succ x^{j}$
we have $\left(\ldots, x^{i}, \ldots, x^{j}+\delta, \ldots\right) \succ\left(\ldots, x^{i}+\delta, \ldots, x^{j}, \ldots\right)$

OP: for all X in D,

- for all $\delta=\left(\delta_{C}, \delta_{O}\right)$ with $\delta_{C}=0$ and $\delta_{0}>0$
- for all poor i and j with $x^{i} \succ x^{j}$ and $x^{i}{ }_{k}=x^{j}{ }_{k}$ for all k for which $\delta_{0, k}>0$
we have $\left(\ldots, x^{i}, \ldots, x^{j}+\delta, \ldots\right) \succ\left(\ldots, x^{i}+\delta, \ldots, x^{j}, \ldots\right)$

Result

A poverty ranking \succcurlyeq satisfies $\mathbf{A R}, \mathbf{F}, \mathbf{M}$ and \mathbf{P} iff there exist - weights $w_{k}>0$ for each cardinal attribute k in C,

- strictly increasing functions $v_{k}: \mathbb{N} \rightarrow \mathbb{R}$, with $v_{k}(0)=0$, for each ordinal attribute k in O,
- a continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$,
- with $f(r)=f(\zeta)$ for each $r \geq \zeta=\Sigma_{k \in C} w_{k} z_{k}+\Sigma_{k \in O} v_{k}\left(z_{k}\right)$,
- that is strictly convex and strictly decreasing on [0, $]$],
such that, for all X and Y in D, we have $X \succcurlyeq Y$ iff

$$
\frac{1}{n_{X}} \sum_{i=1}^{n_{X}} f\left(\sum_{k \in C} w_{k} x^{i}{ }_{k}+\sum_{k \in O} v_{k}\left(x_{k}{ }_{k}\right)\right) \leq \frac{1}{n_{y}} \sum_{i=1}^{n_{y}} f\left(\sum_{k \in C} w_{k} y^{i}{ }_{k}+\sum_{k \in O} v_{k}\left(y^{i}{ }_{k}\right)\right)
$$

Special case: All attributes cardinal

$$
X \succcurlyeq Y \quad \text { iff } \quad \frac{1}{n_{X}} \sum_{i=1}^{n_{X}} f\left(\sum_{k \in C} w_{k} x^{i}{ }_{k}\right) \leq \frac{1}{n_{Y}} \sum_{i=1}^{n_{Y}} f\left(\sum_{k \in C} w_{k} y^{i}{ }_{k}\right)
$$

- Satisfies:
- Weak uniform majorization principle: if $X \neq Y$ and $X=Y Q$ with Q a non-permutation bistochastic matrix, then $X \succcurlyeq Y$
- Correlation increasing majorization principle Example with $z=(10,10):((5,6),(9,2)) \succ((9,6),(5,2))$

A weaker form of priority (work in progress)

- Cardinal priority (CP) is a demanding normative principle
- It asks us to disregard "efficiency costs" caused by diminishing returns to well-being
- Example:
- Suppose $x^{i} \succ x^{j}$, but individual i has only 10 units of attribute 1, while individual j has 100 units
- According to CP, if an extra unit of attribute 1 can be given away, then it should go to individual j

A weaker form of priority (work in progress)

- Consider a weaker version of CP:

For all X in D,

- for all $\delta=\left(\delta_{C}, \delta_{O}\right)$ in B with $\delta_{C}>0$ and $\delta_{O}=0$
- for all poor i and j with $x^{i} \succ x^{j}$ and $x^{i}{ }_{k} \geq x^{j}{ }_{k}$ for all k for which $\delta_{C, k}>0$
we have $\left(\ldots, x^{i}, \ldots, x^{j}+\delta, \ldots\right) \succ\left(\ldots, x^{i}+\delta, \ldots, x^{j}, \ldots\right)$
- Characterizes poverty measures looking like

$$
\frac{1}{n_{x}} \sum_{i=1}^{n_{x}} f\left(\sum_{k \in C} g_{k}\left(x_{k}^{i}\right)+\sum_{k \in O} v_{k}\left(x_{k}^{i}\right)\right)
$$

with v_{k} as before and "appropriate conditions" on f and g_{k}

Conclusion

- Characterization of a class of poverty measures featuring:
- Priority to the worse off poor
- Both cardinal and ordinal attributes
- Flexibility in the choice of identification criterion
- Work in progress:
- Investigate weaker forms of priority
- Derive practical conditions to check unanimity judgments
- An application of the latter using EU-SILC data

