Designing the Inequality-Adjusted Human Development Index (IHDI)

Sabina Alkire, OPHI James E. Foster, OPHI and George Washington University

June 15, 2010 OPHI Workshop

Human Development Index

Motivation

Go beyond per capita income as a wellbeing measure

Ends as well as means

Broaden space

First form of heterogeneity (F. Bourguignon)

Practical indicator

Substantial coverage with existing data Easy to understand

Human Development Index

Issues

```
(i) Choice of dimensions (variables)
        income (GDP per capita to become GNI per capita)
        education (literacy/enrolment to become years
        education/school life expectancy)
        health (life expectancy)
        Why only these?
(ii) Measurability of variables (cardinal or ordinal)
        assumes cardinal (at least interval scale)
        How can you justify?
(iii) Comparability of variables(full, partial or not at all)
             full after normalizing to a common range [0,1]
             How does empirical become normatively relevant?
(iv) Aggregation and weighting (general functions?)
             mean of means
             What about second form of heterogeneity? Inequality
```

This Paper

```
Theory
   Address issue (iv) inequality using FLS (2005)
       Assume issues (i-iii) solved
       Provide plausible calibration method
   Construct IHDI
       Based on Atkinson's ede instead of arithmetic mean
       Focus on H<sub>1</sub> using geometric mean
       And H<sub>1</sub>* suppressing dimensional inequality
   Interpretation
       IHDI and potential IHDI
       Inequality adjustment used below in estimation
   Properties
       H<sub>1</sub> satisfies usual properties
       Invariance properties via geometric mean used below in
           ensuring robustness to calibration choices
```

This Paper

```
Implementation
   Revisit measurement assumptions (ii-iii)
       Calibrating variables
   Estimating indices
       Potential IHDI H<sub>1</sub>*
           Uses aggregate data arithmetic means
           Combine using geometric mean
       IHDI H<sub>1</sub>
           Geometric means unavailable for aggregate data
           Use estimates of Atkinson's inequality measure to adjust mean
           Combine using geometric mean
   Example
```

Review of FLS

Notation

- x distribution of income
- y distribution of education
- z distribution of health
- D matrix of achievements

HDI

$$H(D) = \mu[\mu(x), \mu(y), \mu(z)]$$

Measure of average achievement

Equally distributed equivalent Assuming welfare has form $W(D) = \sum_{i} \sum_{j} u(d_{ij})$ with u linear

HDI

$$H(D) = \mu[\mu(x),\mu(y),\mu(z)]$$

Properties

symmetry in dimensions symmetry in people replication invariance normalization linear homogeneity monotonicity subgroup consistency

Problem

Like per capita GNI, ignores inequality

Gini-adjusted HDI

Anand & Sen (1993) and Hicks (1997)
Use Sen welfare index to include inequality within dimensions

$$S(x) = \mu(x)[1-G(x)]$$
 income
 $S(y) = \mu(y)[1-G(y)]$ education
 $S(z) = \mu(z)[1-G(z)]$ health

Note Mean achievement is discounted by inequality

Gini-adjusted HDI

$$H_G(D) = \mu[S(x),S(y),S(z)]$$

Properties

Symmetry in dimensions, symmetry in people, replication invariance, normalization, linear homogeneity, monotonicity

Violates subgroup consistency

 $H_G(D)$ rises $H_G(D')$ rises $H_G(D;D')$ falls

Gain inequality sensitivity - but at some cost

Not applicable to regional analysis

Also not "path independent"

Results depend on order of aggregation

- people then dimensions vs. dimensions then people

Note Culprit is Gini in Sen welfare measure

Alternatives? Foster, Lopez Calva, Szekely (2005)

Inequality-adjusted HDI (IHDI)

Recall

Equally distributed equivalent income (ede)

The income level which, if assigned to all individuals, produces the same social welfare as the observed distribution.

Note

For any W(x), the associated ede e(x) always ranks distribution the same way as W(x)

The ede e(x) is a welfare function

Equally Distributed Equivalent (ede)

A = initial income distribution Three social welfare levels, I¹, I², I³

Find the following:

Total income
Mean Income
Set of all possible
distributions
Equally distributed
equivalent income

Atkinson's ede

$$e_{\alpha}(x) = \begin{cases} \left[\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\alpha}\right]^{1/\alpha} & \alpha \leq 1, \alpha \neq 0 \\ \prod_{i=1}^{n} x_{i}^{1/n} & \alpha = 0 \end{cases}$$

$$e_{\alpha}(x) = \mu_{\alpha}(x)$$

general mean

$$\boldsymbol{A}_{\epsilon}(x) = [\mu(x) - \mu_{\alpha}(x)]/\mu(x)$$
 inequality

$$\mu_{\alpha}(x) = \mu(x)[1 - A_{\epsilon}(x)]$$
 discounted for ineq

Inequality-adjusted HDI (IHDI)

$$H_{\epsilon}(D) = \mu_{\alpha}(D)$$
 for $\square > 0$, $\alpha = 1 - \square$

- general mean applied to matrix
- ede achievement level

$$\varepsilon = 0$$
 $H_0 = \mu[D]$ usual HDI

$$\epsilon = 1 \quad H_1 = \mu_0 \, [\text{D}]$$
 based on geometric mean $g = \mu_0$ sensitive to inequality

$$\epsilon$$
 = 2 H_2 = μ_{-1} [D] based on harmonic mean μ_{-1} even more sensitive

Inequality-adjusted HDI (IHDI)

$$H_{\varepsilon}(D) = H_{o}(D)[1 - A_{\varepsilon}(D)]$$

Note

Inequality adjusted
Which inequalities?
Both within dimensions
And across dimensions

Interpretation

 H_0 is highest possible level of H_ϵ when one can freely transfer achievements across achievements and dimension

 H_{ϵ} indicates the actual IHDI

Properties

Symmetry in dimensions, symmetry in people, replication invariance, normalization, linear homogeneity, monotonicity

Subgroup consistency

Alternative definitions

```
H_{\epsilon}(D) = \mu_{\alpha} [\mu_{\alpha}(x), \mu_{\alpha}(y), \mu_{\alpha}(z)] aggregate within dimensions then across dimensions
```

 $H_{\epsilon}(D) = \mu_{\alpha}[\mu_{\alpha}(d_1),...,\mu_{\alpha}(d_m)]$ aggregate at individual level then across persons

Path independence

Conceptual

Empirical - need only $A_{\epsilon}(x)$, $A_{\epsilon}(y)$, $A_{\epsilon}(z)$ estimates

Note: Dimensions are not perfect substitutes

Measure of complementarity: ϵ

Sensitive to uneven growth

Not sensitive to correlations!

See work by Seth (2010)

Family of Human Development Indices for Mexican States

Ranking	State	H index	State	H index	Ranking
		e=0		e=3	
1	Chiapas	0.5735	Oaxaca	0.3654	1
2	Oaxaca	0.5881	Chiapas	0.3797	2
3	Guerrero	0.5968	Guerrero	0.3995	3
4	Veracruz	0.6168	Veracruz	0.4337	4
5	Puebla	0.6232	Zacatecas	0.4401	5
6	Yucat‡n	0.6239	Yucat‡n	0.4497	6
7	Michoac‡n	0.6363	Michoac‡n	0.4509	7
8	San Luis Potos'	0.6370	Puebla	0.4545	8
9	Hidalgo	0.6449	San Luis Potos'	0.4641	9
10	Zacatecas	0.6482	Durango	0.4708	10
11	Guanajuato	0.6546	Tlaxcala	0.4747	11
12	Tlaxcala	0.6600	Hidalgo	0.4784	12
13	Durango	0.6608	Nayarit	0.4898	13
14	Quer*taro	0.6637	Guanajuato	0.4937	14
15	Nayarit	0.6638	Chihuahua	0.5069	15
16	Tabasco	0.6646	Tabasco	0.5094	16
17	Morelos	0.6691	Morelos	0.5139	17
18	Campeche	0.6734	Quer taro	0.5146	18
19	Chihuahua	0.6739	y M [*] xico	0.5185	19
20	Tamaulipas	0.6752	Jalisco	0.5246	20
21	Jalisco	0.6772	Sonora	0.5256	21
22	Quintana Roo	0.6798	Tamaulipas	0.5280	22
23	Sinaloa	0.6817	Colima	0.5428	23
24	M*xico	0.6824	Quintana Roo	0.5438	24
25	Sonora	0.6853	Sinaloa	0.5472	25
26	Colima	0.6884	Campeche	0.5473	26
27	Coahuila	0.6957	Coahuila	0.5637	27
28	Aguascalientes	0.7001	Nuevo Le—n	0.5783	28
29	Nuevo Le—n	0.7021	Baja California Sur	0.5787	29
30	Baja California Sur	0.7038	Aguascalientes	0.5811	30
31	Baja California	0.7176	Baja California	0.6150	31
32	Distrito Federal	0.7403	Distrito Federal	0.6376	32

Source: Authors« calculations using the Mexican Census 2000 sample.

Will focus on H_1 as our key IHDI

```
H_1(D) = g(D) = g[g(x), g(y), g(z)]
= g[g(x), g(y), g(z)]
= g[\mu(x)[1-A(x)], \mu(y)[1-A(y)], \mu(z)[1-A(z)]]
```

where $A(x) = 1 - g(x)/\mu(x)$ etc is a transform of Theil's second

Interesting measurement properties Individual Scale Invariance

Changing scale of a single variable preserves ranks And percentage changes

Independence of Standardized Values

Normalize to one country's achievements Preserves ranks and percentage changes

Consistency over Time

A second index H_1^*

$$H_1^*(D) = H_1(D^*) = g[\mu(x), \mu(y), \mu(z)]$$

Contrast with

$$H_1(D) = g[\mu(x)[1-A(x)], \mu(y)[1-A(y)], \mu(z)[1-A(z)]]$$

Idea

 H_1^* is highest possible level of H_ϵ when one can freely transfer achievements across achievements

= Potential H₁

A reinterpretation $\ln H_1(D) = \mu [\ln g(x), \ln g(y), \ln g(z)]$ $\ln H_1^*(D) = \mu [\ln \mu(x), \ln \mu(y), \ln \mu(z)]$

Traditional HDI

 $H_T(D) = \mu [\ln \mu(x), \mu(y), \mu(z)]$