Measuring Poverty from a Multidimensional Perspective

James E. Foster

The George Washington University and OPHI Oxford

Launch of Multidimensional Peer Network 7 June 2013

Why Multidimensional Poverty?

- Missing Dimensions
 - □ Just low income?
- Capability Approach
 - Conceptual framework
- Data
 - More sources
- Tools
 - Unidimensional measures into multidimensional

Why Multidimensional Poverty?

Demand

- Governments and other organizations
 - Can see effects of good policies on poverty: good governance
 - Coordination of Ministries: help overcome "silo" problem

Challenge

- A government would like to create an official multidimensional poverty indicator
- Desiderata
 - It must understandable and easy to describe
 - □ It must conform to a **common sense** notion of poverty
 - □ It must fit the **purpose** for which it is being developed
 - □ It must be **technically** solid
 - □ It must be **operationally** viable
 - □ It must be easily **replicable**
- What would you advise?

Our Proposal - Overview

Identification – Dual cutoffs

Deprivation cutoffs – each deprivation counts

Poverty cutoff – in terms of breadth of deprivation

Aggregation – Adjusted FGT

Reduces to FGT in single variable case

Background papers

Alkire and Foster "Counting and Multidimensional Poverty Measurement" forthcoming *Journal of Public Economics*

Alkire and Santos "Acute Multidimensional Poverty: A new Index for Developing Countries" OPHI WP 38

Alkire and Foster "Understandings and Misunderstandings of Multidimensional Poverty Measurement" *J. of Economic Inequality*

Adjusted Headcount Ratio

Concept - Poverty as multiple deprivations

Mirrors identification used by NGOs – BRAC

Depends on joint distribution

Ordinal data

Dirt floors vs covered floors

Qualitative data into quantitative data

Transparent

Defined by variables, deprivation cutoffs, deprivation values, poverty cutoff

Can be replicated and tested for robustness

Adjusted Headcount Ratio

Can be implemented at many levels

Cross country – MPI in the HDR's since 2010

Country – Mexico, Colombia, El Salvador, etc.

State – Sao Paolo, Minas Gerais

Local village level – DR, India, Bhutan

Evaluation – Impacts on poverty (Smith and Robano 2012)

As a coordination tool – Ministries in Colombia

In constructing other measures – Gross national happiness index (Bhutan), Women's Empowerment in Agriculture Index (USAID/IFPRI), Service delivery performance measure (Allwine and Foster, 2011), Corruption (Foster et al, *WBER* 2012)

Intro to: Multidimensional Methods

Matrix of achievements for *n* persons in *d* equally important domains

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix}$$
 Persons
$$z \quad (13 \quad 12 \quad 3 \quad 1)$$
 Cutoffs

These entries fall below cutoffs

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Persons

Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if $c_i \ge k$ (Ex: k = 2)

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ \underline{2} \\ \underline{4} \\ 1 \end{array} \qquad \text{Persons}$$

Domains c

Note

Includes both union and intersection
Especially useful when number of dimensions is large
Union becomes too large, intersection too small

Next step - aggregate into an overall measure of poverty

Aggregation

Censor data of nonpoor

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} c(k) \\ 0 \\ 4 \\ 0 \end{array} \qquad \text{Persons}$$

Aggregation – Headcount Ratio

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} c(k) \\ 0 \\ \underline{4} \\ 0 \end{array} \qquad \text{Persons}$$

Two poor persons out of four: $H = \frac{1}{2}$ 'incidence'
Critiques

Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k)) = 6/16 = .375$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} c(k) & c(k)/d \\ 0 & 2 & 2/4 \\ 4 & 4/4 \end{array} \text{ Persons}$$

A = average intensity among poor = 3/4

Note: if person 2 has an additional deprivation, M₀ rises

Aggregation – Adjusted Headcount Ratio

Observations

M₀ uses **ordinal** data

Similar to traditional **gap** $P_1 = HI$

HI = per capita poverty gap

= headcount H times average income gap I among poor

HA = per capita deprivation

= headcount H times average intensity A among poor

Decomposable across dimensions after identification

 $M_0 = \sum_j H_j/d$ where H_j are "censored" headcount ratios

Extends easily to the case where deprivations have **different** values

Revisit Objectives

Desiderata

- □ It must **understandable** and easy to describe
- □ It must conform to a **common sense** notion of poverty
- □ It must fit the **purpose** for which it is being developed
- □ It must be **technically** solid
- □ It must be **operationally** viable
- □ It must be easily **replicable**
- What do you think?

Thank you